Concise Communication

Abstract

Hypoglycemia activates the counterregulatory response (CRR), a neural-endocrine reflex that restores euglycemia. Although effective if occasionally activated, repeated induction of the CRR leads to a decline in responsiveness and prolonged exposure to hypoglycemia. The mechanism underlying this impairment is not known. We found that the reduction in epinephrine release that characterizes a suppressed CRR involves a long-lasting form of sympatho-adrenal synaptic plasticity. Using optogenetically evoked catecholamine release, we show that recurrent hypoglycemia reduced the secretory capacity of mouse adrenal chromaffin cells. Single activation of the CRR increased the adrenal levels of tyrosine hydroxylase (TH), the rate-limiting enzyme for catecholamine synthesis, but this was prevented by repeated activation. In contrast, the level of neuropeptide Y (NPY), an adrenal cotransmitter, remained elevated after recurrent hypoglycemia. Inhibition of NPY or Y1 signaling, either transgenically or pharmacologically, prevented the attenuation of both TH expression and epinephrine release. These results indicate that impairment of the CRR involves suppressed activity at the adrenal level. Interfering with the peripheral NPY–dependent negative feedback loop may provide a way to avoid the pathophysiological consequences of recurrent hypoglycemia which are common in the diabetic state.

Authors

Yunbing Ma, Qian Wang, Debria Joe, Manqi Wang, Matthew D. Whim

×

Abstract

Intestinal homeostasis depends on a slowly proliferating stem cell compartment in crypt cells, followed by rapid proliferation of committed progenitor cells in the transit amplifying (TA) compartment. The balance between proliferation and differentiation in intestinal stem cells (ISCs) is regulated by Wnt/β-catenin signaling, although the mechanism remains unclear. We previously targeted PORCN, an enzyme essential for all Wnt secretion, and demonstrated that stromal production of Wnts was required for intestinal homeostasis. Here, a PORCN inhibitor was used to acutely suppress Wnt signaling. Unexpectedly, the treatment induced an initial burst of proliferation in the stem cell compartment of the small intestine, due to conversion of ISCs into TA cells with a loss of intrinsic ISC self-renewal. This process involved MAPK pathway activation, as the proliferating cells in the base of the intestinal crypt contained phosphorylated ERK1/2, and a MEK inhibitor attenuated the proliferation of ISCs and their differentiation into TA cells. These findings suggest a role for Wnt signaling in suppressing the MAPK pathway at the crypt base to maintain a pool of ISCs. The interaction between Wnt and MAPK pathways in vivo has potential therapeutic applications in cancer and regenerative medicine.

Authors

Zahra Kabiri, Gediminas Greicius, Hamed Zaribafzadeh, Amanda Hemmerich, Christopher M. Counter, David M. Virshup

×

Abstract

Ciliopathies are clinically overlapping genetic disorders involving structural and functional abnormalities of cilia. Currently, there are no small-molecule drugs available to treat ciliary defects in ciliopathies. Our phenotype-based screen identified the flavonoid eupatilin and its analogs as lead compounds for developing ciliopathy medication. CEP290, a gene mutated in several ciliopathies, encodes a protein that forms a complex with NPHP5 to support the function of the ciliary transition zone. Eupatilin relieved ciliogenesis and ciliary receptor delivery defects resulting from deletion of CEP290. In rd16 mice harboring a blinding Cep290 in-frame deletion, eupatilin treatment improved both opsin transport to the photoreceptor outer segment and electrophysiological responses of the retina to light stimulation. The rescue effect was due to eupatilin-mediated inhibition of calmodulin binding to NPHP5, which promoted NPHP5 recruitment to the ciliary base. Our results suggest that deficiency of a ciliopathy protein could be mitigated by small-molecule compounds that target other ciliary components that interact with the ciliopathy protein.

Authors

Yong Joon Kim, Sungsoo Kim, Yooju Jung, Eunji Jung, Ho Jeong Kwon, Joon Kim

×

Abstract

Rearrangements involving the neurotrophic receptor kinase genes (NTRK1, NTRK2, and NTRK3; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in <1% of all solid tumors, inhibition of TRK results in profound therapeutic responses resulting in breakthrough FDA-approval of the TRK inhibitor larotrectinib for adult and pediatric solid tumor patients regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and clinical effects of targeting TRK in hematologic malignancies is unknown. Here, through an evaluation for TRK fusions across > 7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 out of 7,311 patients), they conferred responsiveness to TRK inhibition in vitro and in vivo in a patient-derived xenograft and a corresponding AML patient with ETV6-NTRK2 fusion. These data identify that despite their individual rarity, collectively TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition.

Authors

Justin Taylor, Dean Pavlick, Akihide Yoshimi, Christina Marcelus, Stephen S. Chung, Jaclyn F. Hechtman, Ryma Benayed, Emiliano Cocco, Benjamin H. Durham, Lillian Bitner, Daichi Inoue, Young Rock Chung, Kerry Mullaney, Justin M. Watts, Eli L. Diamond, Lee A. Albacker, Tariq I. Mughal, Kevin Ebata, Brian B. Tuch, Nora Ku, Maurizio Scaltriti, Mikhail Roshal, Maria Arcila, Siraj Ali, David M. Hyman, Jae H. Park, Omar Abdel-Wahab

×

Abstract

EZH2-mediated epigenetic regulation of T cell differentiation and regulatory T cell function has been described previously; however, the role of EZH2 in T cell–mediated anti-tumor immunity, especially in the context of immune checkpoint therapy, is not understood. Here, we showed that genetic depletion of EZH2 in regulatory T cells (FoxP3creEZH2fl/fl mice) leads to robust anti-tumor immunity. In addition, pharmacological inhibition of EZH2 in human T cells using CPI-1205 elicited phenotypic and functional alterations of the regulatory T cells and enhanced cytotoxic activity of effector T cells. We observed that ipilimumab (anti–CTLA-4) increased EZH2 expression in peripheral T cells from treated patients. We hypothesized that inhibition of EZH2 expression in T cells would increase the effectiveness of anti–CTLA-4 therapy, which we tested in murine models. Collectively, our data demonstrated that modulating EZH2 expression in T cells can improve anti-tumor responses elicited by anti–CTLA-4 therapy, which provides a strong rationale for a combination trial of CPI-1205 plus ipilimumab.

Authors

Sangeeta Goswami, Irina Apostolou, Jan Zhang, Jill Skepner, Swetha Anandhan, Xuejun Zhang, Liangwen Xiong, Patrick Trojer, Ana Aparicio, Sumit K. Subudhi, James P. Allison, Hao Zhao, Padmanee Sharma

×

Abstract

The transcription factor GATA6 has been shown to be important for lung development and branching morphogenesis in mouse models, but its role in human lung development is largely unknown. Here, we studied the role of GATA6 during lung differentiation using human pluripotent stem cells. We found that the human stem cell lines most efficient at generating NKX2.1+ lung progenitors express lower endogenous levels of GATA6 during endoderm patterning and that knockdown of GATA6 during endoderm patterning increased the generation of these cells. Complete ablation of GATA6 resulted in the generation of lung progenitors displaying increased cell proliferation with up to a 15-fold expansion compared with control cells, whereas the null cell line displayed a defect in further development into mature lung cell types. Furthermore, transgenic expression of GATA6 at the endoderm anteriorization stage skewed development toward a liver fate at the expense of lung progenitors. Our results suggest a critical dosage effect of GATA6 during human endoderm patterning and a later requirement during terminal lung differentiation. These studies offer an approach of modulating GATA6 expression to enhance the production of lung progenitors from human stem cell sources.

Authors

Chia-Min Liao, Somdutta Mukherjee, Amita Tiyaboonchai, Jean Ann Maguire, Fabian L. Cardenas-Diaz, Deborah L. French, Paul Gadue

×

Abstract

HIV-1 acquisition occurs most commonly after sexual contact. To establish infection, HIV-1 must infect cells that support high level replication, namely CD4+ T cells, which are absent from the outermost genital epithelium. Dendritic cells (DCs), present in mucosal epithelia, potentially facilitate HIV-1 acquisition. We show that vaginal epithelial DCs, termed CD1a+ VEDCs, are unlike other blood and tissue derived DCs because they express langerin but not DC-SIGN, and unlike skin-based langerin+ DC subset, Langerhans cells (LC), they do not harbor Birbeck granules. Individuals primarily acquire HIV-1 that utilize the CCR5 receptor (termed either R5 or R5X4) during heterosexual transmission, and the mechanism for the block against variants that only use the CXCR4 receptor (classified as X4) remains unclear. We show that X4 as compared to R5 HIV-1 show limited to no replication in CD1a+ VEDCs. This differential replication occurs post-fusion suggesting that receptor usage influences post-entry steps in the virus life-cycle. Furthermore, CD1a+ VEDCs isolated from HIV-1 infected virologically suppressed women harbor HIV-1 DNA. Thus, CD1a+ VEDCs are potentially both infected early during heterosexual transmission and retain virus during treatment. Understanding the interplay between HIV-1 and CD1a+ VEDCs will be important for future prevention and cure strategies.

Authors

Victor Pena-Cruz, Luis M. Agosto, Hisashi Akiyama, Alex Olson, Yvetane Moreau, Jean-Robert Larrieux, Andrew Henderson, Suryaram Gummuluru, Manish Sagar

×

Abstract

For gene therapy of gain-of-function autosomal dominant diseases, either correcting or deleting the disease allele is potentially curative. To test whether there may be an advantage of one approach over the other for WHIM (warts, hypogammaglobulinemia, infections and myelokathexis) syndrome — a primary immunodeficiency disorder caused by gain-of-function autosomal dominant mutations in chemokine receptor CXCR4 — we performed competitive transplantation experiments using both lethally irradiated wild-type (Cxcr4+/+) and unconditioned WHIM (Cxcr4+/w) recipient mice. In both models, hematopoietic reconstitution was markedly superior using bone marrow (BM) cells from donors hemizygous for Cxcr4 (Cxcr4+/o) compared with BM cells from Cxcr4+/+ donors. Remarkably, only ~6% Cxcr4+/o hematopoietic stem cell (HSC) chimerism post-transplantation in unconditioned Cxcr4+/w recipient BM supported >70% long-term donor myeloid chimerism in blood and corrected myeloid cell deficiency in blood. Donor Cxcr4+/o HSCs differentiated normally and did not undergo exhaustion as late as 465 days post-transplantation. Thus, disease allele deletion resulting in Cxcr4 haploinsufficiency was superior to disease allele repair in a mouse model of gene therapy for WHIM syndrome, allowing correction of leukopenia without recipient conditioning.

Authors

Ji-Liang Gao, Erin Yim, Marie Siwicki, Alexander Yang, Qian Liu, Ari Azani, Albert Owusu-Ansah, David H. McDermott, Philip M. Murphy

×

Abstract

DEP domain–containing 5 protein (DEPDC5) is a repressor of the recently recognized amino acid–sensing branch of the mTORC1 pathway. So far, its function in the brain remains largely unknown. Germline loss-of-function mutations in DEPDC5 have emerged as a major cause of familial refractory focal epilepsies, with case reports of sudden unexpected death in epilepsy (SUDEP). Remarkably, a fraction of patients also develop focal cortical dysplasia (FCD), a neurodevelopmental cortical malformation. We therefore hypothesized that a somatic second-hit mutation arising during brain development may support the focal nature of the dysplasia. Here, using postoperative human tissue, we provide the proof of concept that a biallelic 2-hit — brain somatic and germline — mutational mechanism in DEPDC5 causes focal epilepsy with FCD. We discovered a mutation gradient with a higher rate of mosaicism in the seizure-onset zone than in the surrounding epileptogenic zone. Furthermore, we demonstrate the causality of a Depdc5 brain mosaic inactivation using CRISPR-Cas9 editing and in utero electroporation in a mouse model recapitulating focal epilepsy with FCD and SUDEP-like events. We further unveil a key role of Depdc5 in shaping dendrite and spine morphology of excitatory neurons. This study reveals promising therapeutic avenues for treating drug-resistant focal epilepsies with mTORC1-targeting molecules.

Authors

Théo Ribierre, Charlotte Deleuze, Alexandre Bacq, Sara Baldassari, Elise Marsan, Mathilde Chipaux, Giuseppe Muraca, Delphine Roussel, Vincent Navarro, Eric Leguern, Richard Miles, Stéphanie Baulac

×

Abstract

Mice homozygous for the Tyr208Asn amino acid substitution in the carboxy terminus of Src homology region 2 (SH2) domain–containing phosphatase 1 (SHP-1) (referred to as Ptpn6spin mice) spontaneously develop a severe inflammatory disease resembling neutrophilic dermatosis in humans. Disease in Ptpn6spin mice is characterized by persistent footpad swelling and suppurative inflammation. Recently, in addition to IL-1α and IL-1R signaling, we demonstrated a pivotal role for several kinases such as SYK, RIPK1, and TAK1 in promoting inflammatory disease in Ptpn6spin mice. In order to identify new kinases involved in SHP-1–mediated inflammation, we took a genetic approach and discovered apoptosis signal–regulating kinases 1 and 2 (ASK1 and ASK2) as novel kinases regulating Ptpn6-mediated footpad inflammation. Double deletion of ASK1 and ASK2 abrogated cutaneous inflammatory disease in Ptpn6spin mice. This double deletion further rescued the splenomegaly and lymphomegaly caused by excessive neutrophil infiltration in Ptpn6spin mice. Mechanistically, ASK regulates Ptpn6spin-mediated disease by controlling proinflammatory signaling in the neutrophils. Collectively, the present study identifies SHP-1 and ASK signaling crosstalk as a critical regulator of IL-1α–driven inflammation and opens future avenues for finding novel drug targets to treat neutrophilic dermatosis in humans.

Authors

Sarang Tartey, Prajwal Gurung, Tejasvi Krishna Dasari, Amanda Burton, Thirumala-Devi Kanneganti

×

No posts were found with this tag.