[HTML][HTML] Physiological roles of the GIP receptor in murine brown adipose tissue

JL Beaudry, KD Kaur, EM Varin, LL Baggio, X Cao… - Molecular …, 2019 - Elsevier
JL Beaudry, KD Kaur, EM Varin, LL Baggio, X Cao, EE Mulvihill, HE Bates, JE Campbell
Molecular metabolism, 2019Elsevier
Objective Glucose-dependent insulinotropic polypeptide (GIP) is secreted from the gut in
response to nutrient ingestion and promotes meal-dependent insulin secretion and lipid
metabolism. Loss or attenuation of GIP receptor (GIPR) action leads to resistance to diet-
induced obesity through incompletely understood mechanisms. The GIPR is expressed in
white adipose tissue; however, its putative role in brown adipose tissue (BAT) has not been
explored. Methods We investigated the role of the GIPR in BAT cells in vitro and in BAT …
Objective
Glucose-dependent insulinotropic polypeptide (GIP) is secreted from the gut in response to nutrient ingestion and promotes meal-dependent insulin secretion and lipid metabolism. Loss or attenuation of GIP receptor (GIPR) action leads to resistance to diet-induced obesity through incompletely understood mechanisms. The GIPR is expressed in white adipose tissue; however, its putative role in brown adipose tissue (BAT) has not been explored.
Methods
We investigated the role of the GIPR in BAT cells in vitro and in BAT-specific (GiprBAT−/−) knockout mice with selective elimination of the Gipr within the Myf5+ expression domain. We analyzed body weight, adiposity, glucose homeostasis, insulin and lipid tolerance, energy expenditure, food intake, body temperature, and iBAT oxygen consumption ex vivo. High-fat diet (HFD)-fed GiprBAT−/− mice were studied at room temperature (21 °C), 4 °C, and 30 °C ambient temperatures.
Results
The mouse Gipr gene is expressed in BAT, and GIP directly increased Il6 mRNA and IL-6 secretion in BAT cells. Additionally, levels of thermogenic, lipid and inflammation mRNA transcripts were altered in BAT cells transfected with Gipr siRNA. Body weight gain, energy expenditure, and glucose and insulin tolerance were normal in HFD-fed GiprBAT−/− mice housed at room temperature. However, GiprBAT−/− mice exhibited higher body temperatures during an acute cold challenge and a lower respiratory exchange ratio and impaired lipid tolerance at 21 °C. In contrast, body weight was lower and iBAT oxygen consumption was higher in HFD-fed mice housed at 4 °C but not at 30 °C.
Conclusions
The BAT GIPR is linked to the control of metabolic gene expression, fuel utilization, and oxygen consumption. However, the selective loss of the GIPR within BAT is insufficient to recapitulate the findings of decreased weight gain and resistance to obesity arising in experimental models with systemic disruption of GIP action.
Elsevier