[HTML][HTML] Annexin-A5 promotes membrane resealing in human trophoblasts

R Carmeille, SA Degrelle, L Plawinski, F Bouvet… - … et Biophysica Acta (BBA …, 2015 - Elsevier
R Carmeille, SA Degrelle, L Plawinski, F Bouvet, C Gounou, D Evain-Brion, AR Brisson…
Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2015Elsevier
Abstract Annexin-A5 (AnxA5) is the smallest member of the annexins, a group of soluble
proteins that bind to membranes containing negatively-charged phospholipids, principally
phosphatidylserine, in a Ca 2+-dependent manner. AnxA5 presents unique properties of
binding and self-assembling on membrane surfaces, forming highly ordered two-
dimensional (2D) arrays. We showed previously that AnxA5 plays a central role in the
machinery of cell membrane repair of murine perivascular cells, promoting the resealing of …
Abstract
Annexin-A5 (AnxA5) is the smallest member of the annexins, a group of soluble proteins that bind to membranes containing negatively-charged phospholipids, principally phosphatidylserine, in a Ca2 +-dependent manner. AnxA5 presents unique properties of binding and self-assembling on membrane surfaces, forming highly ordered two-dimensional (2D) arrays. We showed previously that AnxA5 plays a central role in the machinery of cell membrane repair of murine perivascular cells, promoting the resealing of membrane damages via the formation of 2D protein arrays at membrane disrupted sites and preventing the extension of membrane ruptures. As the placenta is one of the richest source of AnxA5 in humans, we investigated whether AnxA5 was involved in membrane repair in this organ. We addressed this question at the level of human trophoblasts, either mononucleated cytotrophoblasts or multinucleated syncytiotrophoblasts, in choriocarcinoma cells and primary trophoblasts. Using established procedure of laser irradiation and fluorescence microscopy, we observed that both human cytotrophoblasts and syncytiotrophoblasts repair efficiently a μm2-size disruption. Compared to wild-type cells, AnxA5-deficient trophoblasts exhibit severe defect of membrane repair. Through specifically binding to the disrupted site as early as a few seconds after membrane wounding, AnxA5 promotes membrane resealing of injured human trophoblasts. In addition, we observed that a large membrane area containing the disrupted site was released in the extracellular milieu. We propose mechanisms ensuring membrane resealing and subsequent lesion removal in human trophoblasts. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Elsevier