Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic …

YS Lee, S Shin, T Shigihara, E Hahm, MJ Liu, J Han… - Diabetes, 2007 - Am Diabetes Assoc
YS Lee, S Shin, T Shigihara, E Hahm, MJ Liu, J Han, JW Yoon, HS Jun
Diabetes, 2007Am Diabetes Assoc
Long-term treatment with glucagon-like peptide (GLP)-1 or its analog can improve insulin
sensitivity. However, continuous administration is required due to its short half-life. We
hypothesized that continuous production of therapeutic levels of GLP-1 in vivo by a gene
therapy strategy may remit hyperglycemia and maintain prolonged normoglycemia. We
produced a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) under the
cytomegalovirus promoter, intravenously injected it into diabetic ob/ob mice, and …
Long-term treatment with glucagon-like peptide (GLP)-1 or its analog can improve insulin sensitivity. However, continuous administration is required due to its short half-life. We hypothesized that continuous production of therapeutic levels of GLP-1 in vivo by a gene therapy strategy may remit hyperglycemia and maintain prolonged normoglycemia. We produced a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) under the cytomegalovirus promoter, intravenously injected it into diabetic ob/ob mice, and investigated the effect of this treatment on remission of diabetes, as well as the mechanisms involved. rAd-GLP-1–treated diabetic ob/ob mice became normoglycemic 4 days after treatment, remained normoglycemic over 60 days, and had reduced body weight gain. Glucose tolerance tests found that exogenous glucose was cleared normally. rAd-GLP-1–treated diabetic ob/ob mice showed improved β-cell function, evidenced by glucose-responsive insulin release, and increased insulin sensitivity, evidenced by improved insulin tolerance and increased insulin-stimulated glucose uptake in adipocytes. rAd-GLP-1 treatment increased basal levels of insulin receptor substrate (IRS)-1 in the liver and activation of IRS-1 and protein kinase C by insulin in liver and muscle; increased Akt activation was only observed in muscle. rAd-GLP-1 treatment reduced hepatic glucose production and hepatic expression of phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and fatty acid synthase in ob/ob mice. Taken together, these results show that a single administration of rAd-GLP-1 results in the long-term remission of diabetes in ob/ob mice by improving insulin sensitivity through restoration of insulin signaling and reducing hepatic gluconeogenesis.
Am Diabetes Assoc