A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth

T Pinheiro, M Otrocka, B Seashore-Ludlow… - Biochemical and …, 2017 - Elsevier
T Pinheiro, M Otrocka, B Seashore-Ludlow, V Rraklli, J Holmberg, K Forsberg-Nilsson…
Biochemical and biophysical research communications, 2017Elsevier
Glioblastoma (GBM) is regarded as the most common malignant brain tumor but treatment
options are limited. Thus, there is an unmet clinical need for compounds and corresponding
targets that could inhibit GBM growth. We screened a library of 80 dopaminergic ligands with
the aim of identifying compounds capable of inhibiting GBM cell line proliferation and
survival. Out of 45 active compounds, 8 were further validated. We found that the dopamine
receptor D2 antagonist trifluoperazine 2HCl inhibits growth and proliferation of GBM cells in …
Abstract
Glioblastoma (GBM) is regarded as the most common malignant brain tumor but treatment options are limited. Thus, there is an unmet clinical need for compounds and corresponding targets that could inhibit GBM growth. We screened a library of 80 dopaminergic ligands with the aim of identifying compounds capable of inhibiting GBM cell line proliferation and survival. Out of 45 active compounds, 8 were further validated. We found that the dopamine receptor D2 antagonist trifluoperazine 2HCl inhibits growth and proliferation of GBM cells in a dose dependent manner. Trifluoperazine's inhibition of GBM cells is cell line dependent and correlates with variations in dopamine receptor expression profile. We conclude that components of the dopamine receptor signaling pathways are potential targets for pharmacological interventions of GBM growth.
Elsevier