[HTML][HTML] Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism

LN Agbor, SRC Ibeawuchi, C Hu, J Wu, DR Davis… - JCI insight, 2016 - ncbi.nlm.nih.gov
LN Agbor, SRC Ibeawuchi, C Hu, J Wu, DR Davis, HL Keen, FW Quelle, CD Sigmund
JCI insight, 2016ncbi.nlm.nih.gov
Abstract Cullin-3 (CUL3) mutations (CUL3Δ9) were previously identified in hypertensive
patients with pseudohypoaldosteronism type-II (PHAII), but the mechanism causing
hypertension and whether this is driven by renal tubular or extratubular mechanisms
remains unknown. We report that selective expression of CUL3Δ9 in smooth muscle acts by
interfering with expression and function of endogenous CUL3, resulting in impaired turnover
of the CUL3 substrate RhoA, increased RhoA activity, and augmented RhoA/Rho kinase …
Abstract
Cullin-3 (CUL3) mutations (CUL3Δ9) were previously identified in hypertensive patients with pseudohypoaldosteronism type-II (PHAII), but the mechanism causing hypertension and whether this is driven by renal tubular or extratubular mechanisms remains unknown. We report that selective expression of CUL3Δ9 in smooth muscle acts by interfering with expression and function of endogenous CUL3, resulting in impaired turnover of the CUL3 substrate RhoA, increased RhoA activity, and augmented RhoA/Rho kinase signaling. This caused vascular dysfunction and increased arterial pressure under baseline conditions and a marked increase in arterial pressure, collagen deposition, and vascular stiffness in response to a subpressor dose of angiotensin II, which did not cause hypertension in control mice. Inhibition of total cullin activity increased the level of CUL3 substrates cyclin E and RhoA, and expression of CUL3Δ9 decreased the level of the active form of endogenous CUL3 in human aortic smooth muscle cells. These data indicate that selective expression of the Cul3Δ9 mutation in vascular smooth muscle phenocopies the hypertension observed in Cul3Δ9 human subjects and suggest that mutations in CUL3 cause human hypertension in part through a mechanism involving smooth muscle dysfunction initiated by a loss of CUL3-mediated degradation of RhoA.
ncbi.nlm.nih.gov