Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma

MA Rosen, MD Schnall - Clinical Cancer Research, 2007 - AACR
MA Rosen, MD Schnall
Clinical Cancer Research, 2007AACR
Traditional cross-sectional tumor imaging focuses solely on tumor morphology. With the
introduction of targeted biological therapies in human trials, morphologic change may lag
behind other physiologic measures of response on clinical images. Dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) is a new imaging method for assessing
the physiologic state of tumor vascularity in vivo. DCE-MRI, which uses available imaging
techniques and contrast agents, assays the kinetics of tumor enhancement during bolus iv …
Abstract
Traditional cross-sectional tumor imaging focuses solely on tumor morphology. With the introduction of targeted biological therapies in human trials, morphologic change may lag behind other physiologic measures of response on clinical images. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a new imaging method for assessing the physiologic state of tumor vascularity in vivo. DCE-MRI, which uses available imaging techniques and contrast agents, assays the kinetics of tumor enhancement during bolus i.v. contrast administration. Modeling of the temporal enhancement pattern yields physiologic variables related to tumor blood flow and microvessel permeability. Changes in these variables after vascular-targeted therapy can then be quantified to evaluate the tumor vascular response. As these responses may precede morphologic tumor shrinkage, DCE-MRI might serve as a noninvasive means of monitoring early tumor response to vascular-targeted therapy. Renal cell carcinoma provides an excellent model for assessing the effect on DCE-MRI in clinical trials. The vascular richness of renal tumors provides a large dynamic scale of DCE-MRI measures. Patients with disseminated renal cell carcinoma frequently present with one or several large tumors, creating an easy imaging target for DCE-MRI evaluation. Finally, renal cell carcinoma is clearly susceptible to therapies that target tumor angiogenesis. DCE-MRI can be used to monitor the vascular changes induced by such therapies. Future efforts must be directed to standardizing image acquisition and analysis techniques to quantify tumor vascular responses.
AACR