Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis

MS McMurtry, S Bonnet, X Wu, JRB Dyck… - Circulation …, 2004 - Am Heart Assoc
MS McMurtry, S Bonnet, X Wu, JRB Dyck, A Haromy, K Hashimoto, ED Michelakis
Circulation research, 2004Am Heart Assoc
The pulmonary arteries (PA) in pulmonary arterial hypertension (PAH) are constricted and
remodeled;. They have suppressed apoptosis, partly attributable to suppression of the bone
morphogenetic protein axis and selective downregulation of PA smooth muscle cell
(PASMC) voltage-gated K+ channels, including Kv1. 5. The Kv downregulation-induced
increase in [K+] i, tonically inhibits caspases, further suppressing apoptosis. Mitochondria
control apoptosis and produce activated oxygen species like H2O2, which regulate vascular …
The pulmonary arteries (PA) in pulmonary arterial hypertension (PAH) are constricted and remodeled;. They have suppressed apoptosis, partly attributable to suppression of the bone morphogenetic protein axis and selective downregulation of PA smooth muscle cell (PASMC) voltage-gated K+ channels, including Kv1.5. The Kv downregulation-induced increase in [K+]i, tonically inhibits caspases, further suppressing apoptosis. Mitochondria control apoptosis and produce activated oxygen species like H2O2, which regulate vascular tone by activating K+ channels, but their role in PAH is unknown. We show that dichloroacetate (DCA), a metabolic modulator that increases mitochondrial oxidative phosphorylation, prevents and reverses established monocrotaline-induced PAH (MCT-PAH), significantly improving mortality. Compared with MCT-PAH, DCA-treated rats (80 mg/kg per day in drinking water on day 14 after MCT, studied on day 21) have decreased pulmonary, but not systemic, vascular resistance (63% decrease, P<0.002), PA medial thickness (28% decrease, P<0.0001), and right ventricular hypertrophy (34% decrease, P<0.001). DCA is similarly effective when given at day 1 or day 21 after MCT (studied day 28) but has no effect on normal rats. DCA depolarizes MCT-PAH PASMC mitochondria and causes release of H2O2 and cytochrome c, inducing a 10-fold increase in apoptosis within the PA media (TUNEL and caspase 3 activity) and decreasing proliferation (proliferating-cell nuclear antigen and BrdU assays). Immunoblots, immunohistochemistry, laser-captured microdissection-quantitative reverse-transcription polymerase chain reaction and patch-clamping show that DCA reverses the Kv1.5 downregulation in resistance PAs. In summary, DCA reverses PA remodeling by increasing the mitochondria-dependent apoptosis/proliferation ratio and upregulating Kv1.5 in the media. We identify mitochondria-dependent apoptosis as a potential target for therapy and DCA as an effective and selective treatment for PAH.
Am Heart Assoc