Wound repair and regeneration

JM Reinke, H Sorg - European surgical research, 2012 - karger.com
JM Reinke, H Sorg
European surgical research, 2012karger.com
The skin is the biggest organ of the human being and has many functions. Therefore, the
healing of a skin wound displays an extraordinary mechanism of cascading cellular
functions which is unique in nature. As healing and regeneration processes take place in all
parts of the human body, this review focuses on the healing processes of the skin and
highlights the classical wound healing phases. While regeneration describes the specific
substitution of the tissue, ie the superficial epidermis, mucosa or fetal skin, skin repair …
Abstract
The skin is the biggest organ of the human being and has many functions. Therefore, the healing of a skin wound displays an extraordinary mechanism of cascading cellular functions which is unique in nature. As healing and regeneration processes take place in all parts of the human body, this review focuses on the healing processes of the skin and highlights the classical wound healing phases. While regeneration describes the specific substitution of the tissue, i.e. the superficial epidermis, mucosa or fetal skin, skin repair displays an unspecific form of healing in which the wound heals by fibrosis and scar formation. The first stage of acute wound healing is dedicated to hemostasis and the formation of a provisional wound matrix, which occurs immediately after injury and is completed after some hours. Furthermore, this phase initiates the inflammatory process. The inflammatory phase of the wound healing cascade gets activated during the coagulation phase and can roughly be divided into an early phase with neutrophil recruitment and a late phase with the appearance and transformation of monocytes. In the phase of proliferation the main focus of the healing process lies in the recovering of the wound surface, the formation of granulation tissue and the restoration of the vascular network. Therefore, next to the immigration of local fibroblasts along the fibrin network and the beginning of reepithelialization from the wound edges, neovascularization and angiogenesis get activated by capillary sprouting. The formation of granulation tissue stops through apoptosis of the cells, characterizing a mature wound as avascular as well as acellular. During the maturation of the wound the components of the extracellular matrix undergo certain changes. The physiological endpoint of mammalian wound repair displays the formation of a scar, which is directly linked to the extent of the inflammatory process throughout wound healing.
Karger