Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion

J Chang, PA Shi, EY Chiang… - Blood, The Journal of …, 2008 - ashpublications.org
J Chang, PA Shi, EY Chiang, PS Frenette
Blood, The Journal of the American Society of Hematology, 2008ashpublications.org
Previous studies using intravital microscopy in a sickle cell disease (SCD) mouse model
suggest that adherent white blood cells (WBCs) play a key role in vaso-occlusion by
capturing circulating red blood cells (RBCs) in venules. Commercial intravenous
immunoglobulin (IVIG) given before the inflammatory stimuli increased microcirculatory
blood flow and survival. To mimic the clinical situation in which SCD patients seek medical
attention after the onset of symptoms, we developed an in vivo model in which the …
Previous studies using intravital microscopy in a sickle cell disease (SCD) mouse model suggest that adherent white blood cells (WBCs) play a key role in vaso-occlusion by capturing circulating red blood cells (RBCs) in venules. Commercial intravenous immunoglobulin (IVIG) given before the inflammatory stimuli increased microcirculatory blood flow and survival. To mimic the clinical situation in which SCD patients seek medical attention after the onset of symptoms, we developed an in vivo model in which the therapeutic intervention (eg, IVIG) was administered after in the inflammatory challenge. In this setting, IVIG rapidly (< 10 minutes) reduced adherent leukocyte numbers and dramatically inhibited interactions between RBCs and WBCs, resulting in improved microcirculatory blood flow and survival of sickle cell “Berkeley” mice. Longer survival correlated positively with blood flow (P = .001) and negatively with the number of adherent leukocytes (P = .001) and RBC-WBC interactions (P = .002). Using multichannel digital fluorescence videomicroscopy, we found that IVIG affected specifically the recruitment of neutrophils. Moreover, further analyses of leukocyte behavior revealed that IVIG significantly increased rolling velocities, indicating that it alters adhesion pathways involved in slow rolling. These data suggest that the potential therapeutic benefits of IVIG in SCD crises should be evaluated in a clinical trial.
ashpublications.org