NF-κB regulates androgen receptor expression and prostate cancer growth

L Zhang, S Altuwaijri, F Deng, L Chen, P Lal… - The American journal of …, 2009 - Elsevier
L Zhang, S Altuwaijri, F Deng, L Chen, P Lal, UK Bhanot, R Korets, S Wenske, HG Lilja
The American journal of pathology, 2009Elsevier
Prostate cancers that progress during androgen-deprivation therapy often overexpress the
androgen receptor (AR) and depend on AR signaling for growth. In most cases, increased
AR expression occurs without gene amplification and may be due to altered transcriptional
regulation. The transcription factor nuclear factor (NF)-κB, which is implicated in
tumorigenesis, functions as an important downstream substrate of mitogen-activated protein
kinase, phosphatidylinositol 3-kinase, AKT, and protein kinase C and plays a role in other …
Prostate cancers that progress during androgen-deprivation therapy often overexpress the androgen receptor (AR) and depend on AR signaling for growth. In most cases, increased AR expression occurs without gene amplification and may be due to altered transcriptional regulation. The transcription factor nuclear factor (NF)-κB, which is implicated in tumorigenesis, functions as an important downstream substrate of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, AKT, and protein kinase C and plays a role in other cancer-associated signaling pathways. NF-κB is an important determinant of prostate cancer clinical biology, and therefore we investigated its role in the regulation of AR expression. We found that NF-κB expression in prostate cancer cells significantly increased AR mRNA and protein levels, AR transactivation activity, serum prostate-specific antigen levels, and cell proliferation. NF-κB inhibitors decrease AR expression levels, prostate-specific antigen secretion, and proliferation of prostate cancer cells in vitro. Furthermore, inhibitors of NF-κB demonstrated anti-tumor activity in androgen deprivation-resistant prostate cancer xenografts. In addition, levels of both NF-κB and AR were strongly correlated in human prostate cancer. Our data suggest that NF-κB can regulate AR expression in prostate cancer and that NF-κB inhibitors may have therapeutic potential.
Elsevier