The cytoskeleton of digestive epithelia in health and disease

NO Ku, X Zhou, DM Toivola… - American Journal of …, 1999 - journals.physiology.org
NO Ku, X Zhou, DM Toivola, MB Omary
American Journal of Physiology-Gastrointestinal and Liver …, 1999journals.physiology.org
The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a
pivotal role in mediating a number of digestive and nondigestive cell functions, including
secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-
eukaryotic cells consists of three highly abundant major protein families: microfilaments
(MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of
associated proteins. Within digestive epithelia, the prototype members of these three protein …
The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.
American Physiological Society