Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons …

JA Javitch, RJ D'Amato… - Proceedings of the …, 1985 - National Acad Sciences
Proceedings of the National Academy of Sciences, 1985National Acad Sciences
N-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) produces neuropathological and
clinical abnormalities in humans, monkeys, and mice that closely resemble idiopathic
parkinsonism. N-Methyl-4-phenylpyridine (MPP+), a metabolite of MPTP formed by
monoamine oxidase B, is accumulated into striatal and cerebral cortical synaptosomes by
the dopamine and norepinephrine uptake systems, respectively, whereas MPTP itself is not
accumulated. The potencies of drugs in inhibiting [3H] MPP+ or [3H] dopamine uptake into …
N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces neuropathological and clinical abnormalities in humans, monkeys, and mice that closely resemble idiopathic parkinsonism. N-Methyl-4-phenylpyridine (MPP+), a metabolite of MPTP formed by monoamine oxidase B, is accumulated into striatal and cerebral cortical synaptosomes by the dopamine and norepinephrine uptake systems, respectively, whereas MPTP itself is not accumulated. The potencies of drugs in inhibiting [3H]MPP+ or [3H]dopamine uptake into striatal synaptosomes are very similar, as are potencies in inhibiting [3H]MPP+ or [3H]norepinephrine uptake into cortical synaptosomes. The Km values for [3H]MPP+ uptake are 170 and 65 nM and the Vmax values are 2 and 0.1 nmol/g of tissue per min in rat striatum and cortex, respectively, similar to values for [3H]dopamine uptake, Autoradiography of accumulated [3H]MPP+ in slices of rat brain shows high densities in the caudate-putamen and nucleus accumbens. Furthermore, blockade of dopamine uptake by mazindol prevents MPTP-induced damage to nigrostriatal dopamine neurons, indicating that MPP+ concentration into dopamine neurons explains their selective destruction by MPTP.
National Acad Sciences