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Opioids in the vanguard
A more complete understanding of the 
neurobiological, molecular, and cellular 
systems involved in pain sensation and 
pain control continues to be a challenging, 
yet productive, proposition. Opioid drugs 
are unquestionably the most effective 
treatment available for moderate to severe 
pain and can provide additional benefits, 
such as relieving anxiety, reducing the 
physical or mental effects of trauma, and 
acting as a soporific and euphorigenic. 
Unfortunately, the clinical efficacy of 
these drugs is accompanied by a pano-
ply of perturbing side effects that include 
respiratory depression, nausea, vomiting, 
constipation, and sedation, not to men-
tion the development of tolerance and the 
potential for addiction. All of these effects 
can be explained at the neurobiological 
level by the distribution of μ-opioid recep-
tor–expressing neurons. It is noteworthy 
that investigations of opioid pharmacol-
ogy and neurobiology include many early, 
seminal observations in recombinant DNA 

technology, molecular pharmacology, and 
medicinal chemistry.

Opioid receptors were first identified 
in the brain through evaluation of radioli-
gand binding with a tritiated form of the 
opioid antagonist naloxone (1), which in 
turn led to isolation of enkephalin, one of 
the first neuropeptides identified (2). One 
of the first mRNAs to be cloned was a par-
tial transcript coding for β-endorphin (3), 
which was isolated from rodent pituitary 
tumor cells. Subsequently, the full-length 
mRNAs coding for the precursor pro-
teins of all three families of endogenous 
opioids proopiomelanocortin (POMC), 
preproenkephalin (PENK), and prepro-
dynorphin (PDYN) (4–7) were also cloned. 
After a concerted research effort, the μ-, 
δ-, and κ-opioid receptors were cloned 
and sequenced (8–11). The advent of gene 
targeting and homologous recombination 
technologies resulted in the opioid recep-
tors being knocked out one at a time and 
in combination (12, 13) to evaluate their 
function and ligands. The KO data clearly 

showed that morphine analgesia is due to 
expression of the μ-opioid receptor (14). 
More recently, the crystal structures of 
the three receptors have been determined 
(15–17), and through in vivo expression 
of receptor-fusion proteins, the circuits 
and cell types that contain these recep-
tors are being defined (18). Many of these 
milestones were achieved via long-term 
research investments, such as the mem-
brane protein structural biology initiative 
component of the NIH Roadmap for Med-
ical Research that began in 2004 (19). This 
partial account serves to show how opioid 
research has frequently been in the van-
guard of many research fields, and current 
opioid pharmacology investigations sug-
gest that new steps are being formed.

Medicinal chemistry
Woven throughout these approximately 
40 years has been an intensive and unre-
lenting search for new opioid analgesics —  
a search that dates back more than 100 
years. Heroin was introduced as an 
improved opioid analog to avoid the side 
effects of morphine at the end of the 
1800s (20). Heroin not withstanding, 
medicinal chemistry efforts have yielded 
a host of new pharmacological agents and 
inventive preparations to modify recep-
tor-subtype selectivity, duration of action, 
speed of onset, and routes and methods 
of administration to treat a wide range 
of pain problems (21). Manipulation of 
the two ends of the temporal pharmaco-
dynamic spectrum has led to the devel-
opment of long-acting analogs and cuta-
neous patches for sustained pain control 
and formulations that are ultra-rapidly 
absorbed for the treatment of cancer 
breakthrough pain or battlefield wounds 
(22–24). Nonetheless, attempts to divorce 
analgesic effects from adverse effects 
continue to prove difficult. In this issue, 
the study by Lu et al. on splicing and in 
vivo analgesia, in conjunction with devel-
opment of biased agonists, provides new 
approaches to opioid drug research, with 
potential for therapeutic translation of 
GPCR biased agonists (25).
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μ-Opioid agonists mediate their analgesic effect through GPCRs that are 
generated via alternate splicing of the Oprm1 transcript. While the majority of 
μ-opioids interact with receptors comprising the canonical 7 transmembrane 
(7TM) domain, a recently identified class of μ-opioids appears to require a 
6TM domain variant. In this issue of the JCI, Lu and colleagues provide an 
in vivo proof-of-concept demonstration that a 6TM isoform of the μ-opioid 
receptor can support functional analgesia in Oprm1-deficent animals. 
The 6TM isoform was pharmacologically distinct from the canonical 7TM 
μ-opioid receptor, and 6TM agonists had a reduced side effect profile, which 
confers a strong therapeutic advantage over standard opioid analgesics. The 
observations of Lu et al. extend the reach of opioid-receptor neurobiology 
and pharmacology into a new era of analgesic discovery. This advance 
emerges from a series of fundamental research analyses in which elements 
of the endogenous opioid system were frequently in the vanguard.
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resulting in no possibility of generating 
any form of MOR1 (25). These mice were 
insensitive to all μ agonists, including mor-
phine and IBNtxA. IBNtxA analgesia could 
be rescued in these animals by expression 
of the 6TM OPRM1–exon 11 splice variant 
receptor (MOR1G), which was mediated 
by lentiviral transduction into spinal cord 
neurons after intrathecal injection. More-
over, MOR1G-transduced animals were 
insensitive to the analgesic actions of mor-
phine. This essential result demonstrates 
that the MOR1G splice variant is both 
necessary and sufficient to confer IBNtxA 
analgesia. The approach employed by Lu 
et al. eliminates the potential for an ecto-
pically expressed receptor to interact with 
the endogenously expressed isoform (25). 
It is also important to recognize that while 
IBNtxA analgesia was rescued, lentiviral 
injection does not necessarily recapitulate 
the pattern of expression of the endoge-
nous Oprm1 gene (33, 34). Nonetheless, 
viral overexpression occurred in enough 
spinal neurons to confer analgesia at this 
level of the CNS.

Quantitation of splicing using 
RNA-sequencing (RNA-Seq)
Other studies have also indicated that 
IBNtxA can produce analgesia without 
constipation, respiratory depression, phys-
ical dependence, or reward behaviors (32). 
How does IBNtxA retain analgesia, yet 
does not produce these adverse effects? 
Furthermore, where exactly in the CNS 
does IBNtxA work? The answers to these 
questions have the potential to provide 
many mechanistic or functional neurobi-
ological answers to long-standing ques-
tions. It may be that visceral tissues, as well 
as respiratory and forebrain centers, lack 
the splicing mechanisms that produce the 
6TM isoform. These regions clearly have 
the capacity for generation and expression 
of typical OPRM1 7TM isoforms. The Pas-
ternak group has previously addressed the 
regional expression of splice variants in 
the brains of several strains of mice using 
reverse transcription PCR (RT-PCR) (35, 
36). However, splicing can now be exam-
ined in more detailed, quantitative, and 
comprehensive terms using deep RNA-
Seq. This method sequences millions of 
short mRNA fragments and provides a 
fully quantitative count of the number of 
fragments associated with each exon of all 

incidence of other CNS side effects, such 
as somnolence and dizziness, was similar. 
These data support the idea that targeting 
biasing mechanisms confers an advantage 
in side effect profile without compromis-
ing analgesic actions. It seems remarkable 
that the intracellular conformation of the 
receptor modifies the extracellular bind-
ing pocket to an extent that it is pharma-
cologically distinguishable. Nonetheless, 
the use of the biased agonism principle is 
generating new potential analgesic agents.

Alternative receptor splicing
A number of recent studies have identi-
fied alternative mRNA splicing as an addi-
tional process that generates a receptor 
capable of discriminating between desired 
and undesired opiate effects. Early work 
examined the apparent heterogeneity of 
μ-receptor splicing and showed that some 
5′ splicing generated an N-terminally trun-
cated protein that lacks the extracellular 
domain and the first transmembrane loop, 
yielding a 6TM protein. In animal models, 
the opiate action observed in Oprm1–exon 
11 KO animals was different that of Oprm1–
exon 1 KO animals (31). Recently, the 6TM 
proteins that result from the Oprm1–exon 
11 splice variant have been proposed as 
novel analgesic targets of the splice-spe-
cific agonist 3-iodobenzoyl-6β-naltrexam-
ide (IBNtxA), which acts on the exon 11–
containing variants of MOR1. IBNtxA has 
analgesic actions, even in animals in which 
exon 1 variants of MOR1 are removed by 
gene deletion and in animals that also lack 
the κ- and δ-opioid receptor paralogs (32).

Lu and colleagues generated mice 
harboring a disruption of exons 11 (the 5′ 
most exon) and 1 from the Oprm1 locus, 

Biased agonism
While cloning, sequencing, and struc-
tural determinations of opioid receptors 
have yielded a deep level of molecular 
definition, several new levels of func-
tional and pharmacological nuance sug-
gest that the goal of an opioid receptor 
agonist that retains analgesic properties 
with fewer deleterious side effects may be 
achievable. Studies over the past 15 years 
have indicated that the opioid system has 
another layer of complexity that resides 
within differential coupling to signaling 
pathways downstream of receptor bind-
ing. This differential activation allows 
for compounds to selectively engage the 
G-protein– or β-arrestin–coupled path-
ways. Studies of β-arrestin 2–deficient 
mice showed that β-arrestin 2 is neces-
sary for opiate desensitization but not 
dependence (26). This observation led 
to the idea that these biased agonists of 
opioid receptors could be used to elicit 
the desired pain-reducing effects of opi-
ates with minimal or no side effects. 
Indeed, many unwanted side effects are 
decreased in the absence of β-arrestin 2 
(27). Subsequently, endomorphin-2 was 
identified as an endogenous biased ago-
nist at μ-opioid receptor variant 1 (MOR1), 
which favors arrestin recruitment (28). 
Several drugs are currently in develop-
ment to exploit biased agonism to achieve 
selective actions at opioid receptors (29).

Results from a phase I study of one 
of the more advanced candidates were 
recently published (30). Compared with 
morphine, the biased agonist was more 
efficacious in the cold pressor test and had 
a shorter, more benign effect on respira-
tion and less severe nausea; however, the 

Figure 1. RNA-Seq analysis of mouse Oprm1 exons in Trpv1 lineage DRG. In the mouse DRG, cells 
expressing RFP under the Trpv1 promoter were separated by FACS and analyzed by RNA-Seq (37). 
Exons 1, 2, 3, and 4 were clearly identified (colored boxes) with approximately equal reads/kilobase of 
transcript/million bases sequenced (RPKM), although exon 4 shows a slightly increased RPKM, likely 
due to additional sequence present at the 3′ end of this exon. Measurements of junctional reads 
containing sequences from more than one exon provide quantitative assessments of mRNA splicing. 
Junctional reads were detected between each of the major exons, spanning the introns between them 
(dashed lines). Additional splicing of Oprm1 was not robustly detected. Notably, the 5′ exon 11 was 
detected with 5 reads (not shown); however, this is below what can be reliably measured by RNA-Seq.
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