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The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney
has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice
lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except
for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+

excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase
in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-
inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion
activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone
of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were
barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was
largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+

conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and
nonredundant role of mTORC2 for distal tubular K+ handling.
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Introduction
Since their discovery in 2002, the mTOR complexes have attract-
ed a tremendous interest. The mTOR complexes belong to the 
AGC family of kinases and control a diverse range of activities, 
including transcription, translation, ribosome biogenesis, nutri-
ent transport, autophagy, and polarization of the actin cytoskel-
eton (1, 2). Much attention had been focused on mTORC1 due to 
its involvement in cellular growth and proliferation and the avail-
ability of rapamycin, a highly specific inhibitor (2–4). In the kid-
ney, mTORC1 has recently been shown to regulate mitochondrial 
biogenesis and thereby control sensitivity to ischemic proximal 
tubular injury (5). mTORC2 is a multiprotein complex consist-
ing of at least 4 major subunits: the kinase mTOR, the rapamy-
cin-insensitive companion of TOR (RICTOR), SIN1, and LST8. 
In addition, several other subunits, i.e., PROTOR, PRR5, and  
DEPTOR, have been identified, which can either modulate kinase 
activity directly or modulate its interaction with downstream tar-
gets (6–8). To date, only insulin has been shown to be an upstream 
regulator of mTORC2, while AKT, serum- and glucocorticoid-
inducible kinase 1 (SGK1), and PKCs have been identified as 
downstream targets (9–11). Due to the lack of an mTORC2-spe-
cific inhibitor and its widespread expression, conditional mice are 
key to understand the functional relevance of this kinase in a cell- 
context–specific manner (12–17). Recent work has demonstrated 

that insulin together with aldosterone can stimulate mTORC2 to 
activate SGK1 by phosphorylating its hydrophobic motif at Ser422 
(6, 18–20). This phosphorylation subsequently enables 3-phos-
phoinositide-dependent kinase 1 (PDK1) to bind to SGK1 and acti-
vate its kinase domain by phosphorylating Thr256 (18, 20). There 
is evidence that SKG1 plays an important role in mediating the 
stimulatory effect of aldosterone on the epithelial sodium channel 
(ENaC, also known as SCNN1) (21, 22) and that SGK1 may also 
be involved in stimulating the renal secretory K+ channel ROMK 
(also known as KCNJ1) (23) as well as several other ion channels 
(24). Interestingly, dysregulation of epithelial sodium absorption 
by inhibition of mTORC1 and mTORC2 was observed in cultured 
renal cortical collecting duct (CCD) cells (25). Recently, an elegant 
pharmacological approach has been used to investigate the role of 
mTORC in regulating tubular ion transport in vivo. From studying 
effects of mTOR kinase inhibitors it was concluded that mTORC2 
regulates tubular Na+ uptake by promoting ENaC activity (26).

However, the direct impact of mTORC2 on renal tubular 
Na+ and K+ transport in vivo remains to be determined. Here, we 
generated a mouse model lacking mTORC2 in the distal tubule 
and identified mTORC2 as a master regulator of distal tubular 
K+ secretion.

Results
Distal tubular mTORC2 deletion does not cause any obvious clini-
cal phenotype under physiological conditions. To study the potential 
role of mTORC2 for distal tubular electrolyte handling Ksp pro-
moter-driven Cre mice were used to generate distal tubular Rictor 
deficiency (Figure 1A and ref. 27). To demonstrate the effective-
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(Figure 2A and Table 1). Compared with that under control diet, 
the plasma aldosterone level was increased to a similar extent 
in animals of both genotypes under low-Na+ diet (Figure 2B and 
Table 1). Thus, under low-salt conditions, loss of mTORC2 did 
not seem to cause a significant dysfunction of Na+ reabsorption 
in the aldosterone-sensitive distal nephron (ASDN). This raised 
the question of whether mTORC2 was more important to the 
process of facilitating renal K+ secretion than to that of mediating 
Na+ reabsorption, both of which are known to be intimately linked 
processes (30, 31).

To address this question, mice were fed a diet with low-Na+ 
and high-K+ content. While control mice tolerated this diet, knock-
out animals rapidly lost nearly 24% of their body weight, exhibited 
reduced water intake, reduced urinary volume, and a dramatically 
increased serum urea of 262 ± 42 mg/dl (Figure 2A and Table 1). 
Despite excessively increased aldosterone levels (10,596 ± 416 
pg/ml vs. 3,843 ± 389 pg/ml), these mice were unable to secrete 
excess K+, which led to life-threatening hyperkalemia of 7.6 ± 0.5 
mM and lethality (7 of 12 mice) (Figure 2, B and C). This pheno-
type is quite different from previously published knockout mouse 
models targeting ENaC or its regulation in the ASDN. Constitu-
tive deletion of β-ENaC led to perinatal death due to Na+ loss and 
hyperkalemia, with a pseudohypoaldosteronism similar to that 
of mineralocorticoid receptor knockout animals, whereas mice 
with a CD-specific conditional knockout of α-ENaC were able to 
maintain Na+ and K+ homeostasis, even when challenged by Na+ 
restriction or K+ loading (32–34). The latter finding indicates the 
importance of the early portion of the ASDN, i.e., the late distal 
convoluted tubule and connecting tubule, for the maintenance of 
Na+ and K+ balance (35).

Increasing amounts of dietary Na+ diminished the K+ excreto-
ry defect of Rictor knockout mice, presumably due to an increase 
in ENaC-mediated sodium transport that results in an increased 

ness of our conditional knockout, we crossed Rictorfl/fl Ksp-Cre 
mice to the Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J reporter strain 
and established primary cultures of FACS-sorted distal tubular 
cells. On both a genomic and protein level we demonstrated loss 
of Rictor in distal tubular cells (Figure 1, B and C, and Supplemen-
tal Figure 1, A and B; supplemental material available online with 
this article; doi:10.1172/JCI80304DS1). Cre activity was confined 
to all cells of the thick ascending limb (TAL), approximately 40% 
of distal convoluted tubule (DCT) cells, and again virtually all 
cells of the collecting duct (CD) (Supplemental Figure 1, C and 
D). Tubular expression of RICTOR was most prominent in CDs 
and was prominent to a lesser extent in DCT and TAL cells (Sup-
plemental Figure 1, E and F). Rictorfl/fl Ksp-Cre mice were born at 
the expected Mendelian ratio and were viable, fertile, and indis-
tinguishable from their Rictorfl/fl (thereafter referred to as control) 
littermates by visual inspection. At 1 year of age, they did not 
exhibit any evidence of renal dysfunction, neither histologically 
nor when fibrosis, proliferation, and kidney function were exam-
ined in detail (Supplemental Figure 1, G–Q). However, Rictorfl/fl  
Ksp-Cre mice maintained on a control diet had higher plasma 
aldosterone levels (882 ± 159 pg/ml) than control animals (386 
± 55 pg/ml) (Table 1 and Figure 2B). This suggests that Rictorfl/fl 
Ksp-Cre mice compensate an impaired Na+ and/or K+ handling in 
the distal tubule by increasing plasma aldosterone.

mTORC2 is a key survival factor in response to electrolyte chal-
lenges. Aldosterone is either secreted during volume contraction 
when Na+ reabsorption has to be increased or to facilitate K+ 
elimination during hyperkalemia. A low-Na+ diet is the standard 
physiologic test to determine whether aldosterone-mediated Na+ 
absorption is impaired (28, 29). Rictorfl/fl Ksp-Cre and control 
mice given a low-Na+ diet with normal K+ content showed similar 
changes in body weight, urinary output, urinary Na+ or K+ excre-
tion, and serum urea, even after prolonged intervention (14 days) 

Figure 1. mTORC2 is expressed in distal tubular cells and can be efficiently targeted using a conditional genetic approach. (A) Schematic of the 
recombination strategy: Rictor was Cre excised under the Ksp promoter in the TAL, DCT, and CD. (B) RICTOR knockout was confirmed on a protein level 
in primary isolated tubular cells (the ACTININ blot was derived from parallel samples run on a separate gel). (C) Immunofluorescence proved the speci-
ficity of our knockout approach, showing a lack of RICTOR signal in distal tubuli in knockout animals (left, control; right, Rictorfl/fl Ksp-Cre; red, RICTOR; 
green, Dolichos biflorus agglutinin [DBA] as distal tubular marker; blue, Hoechst 33342). Red arrows point to and red dashed lines indicate the lack of 
RICTOR staining in DBA-positive tubular segments. Scale bar: 20 μm.
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ment with furosemide (183 ± 20 mg/dl) and hydrochlorothiazide 
(HCT) (108 ± 14 mg/dl) (Table 2). In the case of furosemide, we 
could additionally detect an increased urinary sodium excretion, 
which, like triamterene or low-Na+/high-K+ diet, might contribute 
to volume contraction and prerenal azotemia (Table 2).

Extracellular potassium levels influence mTORC2 expression. To 
unravel the molecular pathways involved in mTORC2-mediated 
regulation of K+ handling, we studied the upstream and down-
stream molecules of mTORC2 action in distal tubular epithelial 
cells. Using RICTOR-specific antibodies, we could barely detect 
a RICTOR signal under basal conditions by immunofluorescence 
of kidney sections or by Western blot analysis of kidney lysates 
(Figure 3, A–F, M, and N). This changed dramatically when we 
analyzed mice treated with triamterene for 5 days. Using immu-
nofluorescence we could detect a major upregulation of RICTOR 
in distal tubules and peritubular cells in control animals, while 
the tubular upregulation was absent in Rictorfl/fl Ksp-Cre animals 
(Figure 3, G–L). Western blots of kidney lysates confirmed upregu-
lation of RICTOR in Rictorfl/fl mice treated with triamterene (Fig-
ure 3, M and N). Cell-culture experiments with the M1 cell line 

electrical driving force for potassium secretion (Figure 2C). How-
ever, plasma aldosterone levels remained significantly elevated 
under a high-Na+/high-K+ diet in knockout animals (Table 1 and 
Figure 2B). Together, these data reveal an overall impaired ability 
to secrete K+ in mTORC2-deficient mice, which can be compen-
sated under physiological conditions by elevated aldosterone lev-
els or partially alleviated by increased distal Na+ delivery.

Based on RICTOR localization, the Ksp-Cre expression pat-
tern, and the results of the dietary interventions, we postulated that 
the impaired tubular segment in Rictorfl/fl Ksp-Cre mice is indeed 
the ASDN. We hypothesized that by giving the mice an ENaC-
inhibiting diuretic, we would see similar differences between 
the genotypes. In fact, when triamterene was given orally over 5 
days, Rictorfl/fl Ksp-Cre mice lost nearly 15% of body weight and 
showed reduced food intake, increased urinary sodium loss, and 
life-threatening hyperkalemia of 9.8 ± 0.5 mM, despite approxi-
mately 7-fold increased plasma aldosterone levels of 8,551 ± 235 
pg/ml (Figure 2, D–F, and Table 2). In addition, Rictorfl/fl Ksp-Cre 
animals developed acute renal failure, with a plasma urea of 235 
± 18 mg/dl, a finding that at lower levels was also seen after treat-

Table 1. Dietary challenges in Rictorfl/fl Ksp-Cre and control mice — metabolic cage experiments and electrophysiological studies on 
split-open tubular segments

Control LS/NK LS/HK NS/HK HS/HK n
Na/K content (μmol/g food) 117/182 7/182 7/1,281 117/1,281 117/1,281 +77 μmol Na  

per ml drink
WT ΔBW after 5 days (g) NA –0.3 ± 0.2 –2.3 ± 0.3 –1.1 ± 0.6 0.3 ± 0.1 6–12
KO ΔBW after 5 days (g) NA –0.5 ± 0.2 –5.9 ± 0.4A –4.6 ± 0.4A 0.6 ± 0.2 5–12
WT food (g/24 h) 3.3 ± 0.1 3.5 ± 0.2 3.2 ± 0.1 4.0 ± 0.2 3.7 ± 0.1 6–30
KO food (g/24 h) 3.3 ± 0.1 3.1 ± 0.3 1.9 ± 0.1A 3.4 ± 0.2B 3.6 ± 0.1 6–30
WT drink (ml/24 h) 6.1 ± 0.8 4.8 ± 0.8 15.9 ± 2.6 12.7 ± 2.0 13.6 ± 1.1 6–29
KO drink (ml/24 h) 7.9 ± 1.0 4.5 ± 0.5 8.6 ± 0.7C 12.5 ± 2.1 16.6 ± 0.8 6–30
WT urine (ml/24 h) 2.2 ± 0.3 2.4 ± 0.5 6.4 ± 1.2 5.3 ± 0.6 5.3 ± 0.4 6–29
KO urine (ml/24 h) 2.9 ± 0.2 1.9 ±0.2 3.1 ± 0.2C 6.0 ± 1.3 7.3 ± 0.6B 6–30
WT plasma urea (mg/dl) 34 ± 7 33 ± 5 75 ± 17 53 ± 6 13 ± 1 6–11
KO plasma urea (mg/dl) 38 ± 4 30 ± 6 262 ± 42A 89 ± 14B 15 ± 2 5–7
WT plasma Na (mM) 151 ± 2 155 ± 3 153 ± 3 148 ± 1 150 ± 11 6–14
KO plasma Na (mM) 153 ± 2 152 ± 2 154 ± 2 146 ± 1 150 ± 2 4–10
WT plasma K (mM) 4.41 ± 0.17 3.86 ± 0.12 4.58 ± 0.17 4.67 ± 0.29 4.29 ± 0.1 6–14
KO plasma K (mM) 4.47 ± 0.2 4.12 ± 0.21 7.64 ± 0.53A 6.90 ± 0.48C 5.71 ± 0.68 5–10
WT aldosterone (pg/ml) 386 ± 55 1,212 ± 293 3,843 ± 389 1,401 ± 456 88 ± 35 5–20
KO aldosterone (pg/ml) 882 ± 159C 1,889± 308 10,569 ± 416A 9,212 ± 798A 1,222 ± 398B 5–16
WT urine Na (μmol/24 h/g food) on day 4 83 ± 2 5 ± 1 16 ± 1 53 ± 6 307 ± 27 4–29
KO urine Na (μmol/24 h/g food) on day 4 91 ± 3 8 ± 1 28 ± 2C 61 ± 13 329 ± 24 5–30
WT urine K (μmol/24 h/g food) on day 4 142 ± 4 125 ± 5 490 ± 45 552 ± 68 1,088 ± 122 4–29
KO urine K (μmol/24 h/g food) on day 4 145 ± 5 154 ± 19 465 ± 48 577 ± 147 1,004 ± 70 5–30
WT urine Na/K on day 4 0.54 ± 0.02 0.04 ± 0.01 0.03 ± 0.005 0.10 ± 0.002 0.29 ± 0.02 6–29
KO urine Na/K on day 4 0.57 ± 0.03 0.06 ± 0.02 0.07 ± 0.005A 0.12 ± 0.003B 0.33 ± 0.01 5–29
WT ΔIamil (pA) 27 (8; 70) 24

KO ΔIamil (pA) 64 (18; 96) 14

WT ΔIBa (pA) 19 (14; 34) 21

KO ΔIBa (pA) 1.3 (0; 76) 10

Arithmetic mean ± SEM or median with interquartile range. LS/NK, low-sodium/normal potassium diet; LS/HK, low-sodium/high-potassium diet; NS/HK 
normal sodium/high-potassium diet; HS/HK, high-sodium/high-potassium diet. AP < 0.001, BP < 0.01, CP < 0.05, ANOVA; the nonparametric Kolmogorov-
Smirnov test was used to evaluate the patch clamp data. For the last four rows of the table, data are given as median (Q50) (lower quartile [Q25]; upper 
quartile [Q75]), due to the highly asymmetric current distributions.
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(Figure 5, A, B, E, F, I, J, M, and N). As expected, ROMK expression 
in TAL segments was indistinguishable between genotypes (Figure 
5). Together, these data underline the functional role of mTORC2-
mediated hydrophobic motif phosphorylation of SGK1 and PKCα to 
stimulate kaliuresis via ROMK.

Next, we studied whether genetic interference with mTORC2 
also impairs the regulation of ENaC expression. In both Rictor-
deficient animals as well as control animals, we detected a shift 
of α-, β-, and γ-ENaC (also known as SCNN1a, SCNN1b, and 
SCNN1g) from a predominant intracellular localization in untreat-
ed animals to the apical membrane following low-sodium (LS), 
LS/high-potassium (LS/HK), and triamterene treatment (Supple-
mental Figure 3, A–L; Supplemental Figure 4, A–L; Supplemental 
Figure 5, A–L; and Supplemental Figure 6, A–L). Qualitatively, the 
fluorescence signal for the 3 ENaC subunits did not seem to dif-
fer between control and Rictor-deficient animals. Together, these 
data indicate that both ENaC translocation to the apical mem-
brane and overall expression were not substantially impaired by 
mTORC2 deficiency.

mTORC2 is required to enable a barium-sensitive apical K+ con-
ductance. To further functionally dissect the downstream effects 
of mTORC2 deficiency, we performed patch-clamp experiments 
on split-open tubular segments from the transition zone of the 
late connecting tubule and early CCD (CNT/CCD) from control 
and Rictor-deficient mice. ENaC activity was measured by deter-

revealed that raising K+ in the medium increased RICTOR protein 
expression in a time- and concentration-dependent manner (Sup-
plemental Figure 2, A–E). This suggests a positive feedback loop 
of potassium concentration regulating RICTOR/mTORC2 expres-
sion, with subsequent RICTOR/mTORC2-dependent stimulation 
of potassium excretion.

mTORC2 regulates ROMK expression and membrane localization 
via SGK1 and PKCα. Next, we searched for mTORC2 downstream 
effectors. Previous work has identified mTORC2 as the hydropho-
bic motif kinase of other AGC kinases, i.e., SGK1, or PKCα. Phos-
phorylation of the hydrophobic motif enables kinases like PDK1 to 
bind to SGK1 or PKCα and to phosphorylate the respective kinase 
domain, which finally activates the aforementioned kinases. In fact, 
PKCα has been shown to increase membrane insertion of ROMK 
(36). SGK1 seems to increase K+ secretion by influencing ROMK 
activity (23, 24) and by increasing the lumen-negative driving force 
for K+ ions through enhanced Na+ reabsorption via ENaC (30, 31). 
In line with these previous observations, control animals showed 
a marked phosphorylation of SGK1 at Ser422 and PKCα at Thr657, 
while these phosphorylation events were absent in Rictor-deficient 
animals (Figure 4). In agreement with the impaired SGK1 and PKCα 
phosphorylation in Rictor-deficient animals, apical membrane 
localization of ROMK was nearly absent in Rictorfl/fl Ksp-Cre ani-
mals (Figure 5, C, D, G, H, K, L, O, and P) compared with control 
mice in aquaporin 2–positive (AQP2-positive) tubular segments 

Figure 2. Distal tubular mTORC2 deletion is a key survival factor in response to electrolyte challenges. (A) After 4 days on the indicated diets, Rictorfl/fl 
Ksp-Cre mice only lost weight under low-Na+/high-K+ (LS/HK) and normal Na+/HK (NS/HK) diets but not under LS/normal K+ (LS/NK) or high-Na+/HK (HS/
HK) diets. (B) Despite striking elevations of plasma aldosterone, (C) Rictorfl/fl Ksp-Cre animals, in contrast to control mice, developed hyperkalemia under a 
HK diet that got more severe as the Na+ content was lowered. (D) Virtually all diuretics either directly or indirectly act on the ASDN. We tested the response to 
oral furosemide (Furo), hydrochlorothiazide (HCT), and triamterene (Triam) for 5 days. Similar to HK diet, Rictorfl/fl Ksp-Cre mice lost 20% of their body weight 
under triamterene, while weight loss was modest for furosemide and HCT. (E) Similar to LS/HK diet, triamterene led to hyperkalemia, (F) again despite maxi-
mal secretion of aldosterone, which reached higher levels with the more distal block of the diuretic (ANOVA; #P < 0.05; ##P < 0.01; ###P < 0.001; n = 4–30).
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at the single-cell level. Our patch-clamp data therefore suggest that, 
by increasing plasma aldosterone levels, Rictorfl/fl Ksp-Cre mice 
maintain normal ENaC activity in the CNT/CCD, whereas ROMK 
activity is largely reduced in the majority of cells. The compensa-
tory increase of ROMK activity in a minority of cells may explain 
why the knockout animals can maintain a potassium balance unless 
challenged with a high-K+ diet.

An anticipated compensatory mechanism during hyper-
kalemic states is reduced activity of Na-Cl cotransporter 
(NCC, also known as SCL12A3) induced by dephosphoryla-
tion. Indeed, we could detect reduced phosphorylation of 
NCC at Thr58 under hyperkalemic conditions in LS/HK- and 
triamterene-treated knockout animals (Supplemental Figure 
3, M–T; Supplemental Figure 4, M–T; Supplemental Figure 5, 
M–T; and Supplemental Figure 6, M–T). While ROMK seems 

mining the amiloride-sensitive whole-cell current (ΔIamil). As illus-
trated by the original recordings (Figure 6A) and by the summary 
data (Figure 6B), ΔIamil values were similar in control and Rictorfl/fl  
Ksp-Cre animals. To assess apical K+ conductance, outside-out 
patches were excised, and the effect of Ba2+, a known inhibitor of 
K+ channels, including ROMK, was determined. As illustrated by 
the 2 representative recordings shown in Figure 6C, the Ba2+- sensi-
tive currents (ΔIBa) were usually much larger in control mice than 
in knockout animals. In some outside-out patches, single-channel 
activity typical for ROMK could be resolved (Supplemental Figure 7, 
A–C). Importantly, in 8 of 10 outside-out patches from Rictorfl/fl Ksp-
Cre mice, ΔIBa was barely detectable or was even absent (Figure 6D). 
However, in 2 patches very large ΔIBa values (105 and 514 pA) were 
observed in Rictorfl/fl Ksp-Cre mice (Figure 6D). This latter finding 
may reflect a lack of Rictor knockout caused by nonrecombination 

Table 2. Diuretic challenges in Rictorfl/fl Ksp-Cre and control mice — metabolic cage experiments

Control Furosemide Hydrochlorothiazide Triamterene n
WT dose (μg/g BW/24 h) NA 53 ± 6 156 ± 31 56 ± 6 15–16
KO dose (μg/g BW/24 h) NA 60 ± 5 145 ± 13 41 ± 3A 13–15
WT ΔBW after 5 days g) NA –1.4 ± 0.4 –0.9 ± 0.3 –0.8 ±0.4 15–16
KO ΔBW after 5 days (g) NA –2.0 ± 0.5 –0.9 ± 0.4 –4.6 ± 0.4B 15–18
WT food (g/24 h) 2.9 ± 0.1 3.0 ± 0.1 3.3 ± 0.1 3.3 ± 0.2 15–49
KO food (g/24 h) 3.1. ± 0.1 2.8 ± 0.2 3.4 ± 0.2 2.5 ± 0.2B 13–51
WT drink (ml/24 h) 6.0 ± 0.7 9.8 ± 0.9 7.9 ± 0.8 7.2 ± 0.8 15–49
KO drink (ml/24 h) 6.8 ± 0.5 11.9 ± 0.9 8.3 ± 0.6 4.9 ± 0.3A 13–51
WT urine (ml/24 h) 2.0 ± 0.2 5.0 ± 0.5 3.1 ± 0.3 2.4 ± 0.3 15–49
KO urine (ml/24 h) 2.7 ± 0.2C 7.6 ± 0.6C 3.7 ± 0.4 2.4 ± 0.3 13–51
WT plasma urea (mg/dl) 34 ± 7 114 ± 15 70 ± 9 53 ± 6 8–15
KO plasma urea (mg/dl) 38 ± 4 183 ± 20C 108 ± 14A 235 ± 19B 5–13
WT plasma Na (mM) 151 ± 2 143 ± 2 140 ± 3.7 147 ± 3 11–19
KO plasma Na (mM) 153 ± 2 147 ± 2 137 ± 4.1 145 ± 3 10–16
WT plasma K (mM) 4.41 ± 0.17 3.31 ± 0.11 3.50 ± 0.12 5.18 ± 0.23 11–19
KO plasma K (mM) 4.47 ± 0.20 3.53 ± 0.17 3.57 ± 0.12 9.81 ± 0.50B 10–16
WT aldosterone (pg/ml) 386 ± 55 838 ± 348 822 ± 172 1282 ± 330 8–15
KO aldosterone (pg/ml) 882 ± 159C 2,403 ± 419A 3,110 ± 800A 8,551 ± 235B 8–12
WT urine Na on day 1  
  (μmol/24 h/g food)

NA 124 ± 11 102 ± 6 102 ± 7 15–16

KO urine Na on day 1  
  (μmol/24 h/g food)

NA 178 ± 22B 99 ± 7 136 ± 11A 15–18

WT urine Na on day 2–5  
  (μmol/24 h/g food) 

NA 72 ± 5 75 ± 3 88 ± 5 15–16

KO urine Na on day 2–5  
  (μmol/24 h/g food)

NA 75 ± 8 74 ± 3 93 ± 7 14–18

WT urine K on day 1  
  (μmol/24 h/g food)

NA 156 ± 15 129 ± 8 114 ± 10 13–16

KO urine K on day 1  
  (μmol/24 h/g food)

NA 157 ± 18 124 ± 7 125 ± 9 15–18

WT urine K on day 2–5  
  (μmol/24 h/g food)

NA 128 ± 7 130 ± 4 133 ± 10 13–16

KO urine K on day 2–5  
  (μmol/24 h/g food)

NA 119 ± 14 124 ± 6 140 ± 8 14–18

WT urine Na/K on day 1 0.64 ± 0.03 0.88 ± 0.04 0.80 ± 0.03 1.04 ± 0.13 13–46
KO urine Na/K on day 1 0.62 ± 0.01 1.27 ± 0.25A 0.80 ± 0.03 1.11 ± 0.06 13–51
WT urine Na/K on day 2–5 NA 0.58 ± 0.01 0.58 ± 0.01 0.74 ± 0.06 13-16
KO urine Na/K on day 2–5 NA 0.73 ± 0.12 0.60 ± 0.01 0.67 ± 0.04 14–18

Arithmetic mean ± SEM. AP < 0.05, BP < 0.001, CP < 0.01, ANOVA.

https://www.jci.org
https://www.jci.org
https://www.jci.org/126/5
https://www.jci.org/articles/view/80304#sd
https://www.jci.org/articles/view/80304#sd
https://www.jci.org/articles/view/80304#sd
https://www.jci.org/articles/view/80304#sd
https://www.jci.org/articles/view/80304#sd
https://www.jci.org/articles/view/80304#sd


The Journal of Clinical Investigation   R e s e a r c h  a r t i c l e

1 7 7 8 jci.org      Volume 126      Number 5      May 2016

to be the main K+ secretory pathway of the distal tubule in the 
resting state, α–Ca-activated K channel (α-BK, also known as 
KCNMA1) becomes more important under high urinary flow or 
increased distal tubular Na+ delivery (37). We therefore investi-
gated the expression of the α-BK subunit as a second possible K+ 
secretory pathway under LS/HK or triamterene. Interestingly, 

this subunit was found to be significantly downregulated under 
the same conditions in Rictorfl/fl Ksp-Cre mice when corrected 
total cell fluorescence was analyzed in immunofluorescence 
images (Supplemental Figure 3, U–X; Supplemental Figure 4, 
U–X; Supplemental Figure 5, U–X; Supplemental Figure 6, U–X; 
and Supplemental Figure 8).

Figure 3. Extracellular potassium levels regulate mTORC2 expression. (A–F) Under physiological conditions, RICTOR could hardly be detected by 
immunofluorescence in control renal tissue (green, DBA, A and D; red, RICTOR, B and E; merge, C and F; blue, Hoechst 33342). (G–L) Treatment with the 
K+-sparing diuretic triamterene led to a dramatic upregulation of RICTOR protein in kidney tubules as well as in the renal interstitium. While Ksp-mediated 
knockout of RICTOR abolished the signal in tubuli, the prominent staining in the interstitium was maintained (green, DBA, G and J; red, RICTOR, H and 
K; merge, I and L; blue, Hoechst 33342). White arrows point to DBA-positive tubuli. (M and N) Western blot on control tissue with or without treatment 
with triamterene confirmed the immunofluorescence results, showing a nearly 20-fold increase in RICTOR protein levels (representative images of n = 3 
examined animals per genotype are shown; Student’s t test; ##P < 0.01). Scale bar: 100 μm (A–I); 20 μm (J–L).
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In summary, we have shown, on both a cellular as well as a 
whole-animal level, that Rictorfl/fl Ksp-Cre mice have a severe dis-
tal tubular K+ secretory defect, which is mainly due to a reduced 
membrane expression and function of ROMK.

Discussion
mTOR kinases regulate a variety of cellular functions, such as 
autophagy, transcription, protein translation, cell renewal, cell 
growth, metabolism, and stress response (3, 38). Recent findings 
indicate that dysregulation of mTOR contributes to some of the 
most common kidney diseases, like polycystic kidney disease 
and diabetic nephropathy. Therefore, mTOR is of major interest 
in light of its potential as a therapeutic target. However, clinical 
applications of mTOR inhibitors have been of limited success, 
in part due to an incomplete understanding of the complexity of 
mTOR function and regulation in vivo (3, 4). Thus, the precise dis-
section of the two distinct mTOR complexes at the in vivo cellular 
level will be essential to gain insight into the signaling pathways 
they regulate and to predict the likely outcome following their 

inhibition. Here, we combined tubulus-specific transgenic mouse 
models, metabolic monitoring, primary cultured transgenic tubule 
cells, and split-open tubular patch-clamp experiments to highlight 
an unexpected vital role of mTORC2 as a direct regulator of distal 
tubular K+ secretion.

Recent studies have suggested a role for mTOR signaling in 
tubular Na+ and K+ handling (20, 25, 26, 39). Genetic deletion 
of TSC1 (which encodes tuberous sclerosis complex protein 1), 
with ensuing constitutive activation of mTORC1 in CDs, was 
associated with hyperkalemia (39). However, it was not possible 
to delineate whether defective electrolyte handling was due to 
tubular dedifferentiation or primary changes in ion transport. 
Another recent in vivo–based study using structurally distinct 
competitive mTOR kinase inhibitors (PP242 and AZD8055) 
reported significant natriuresis but not kaliuresis (26). In 
contrast to our findings, these data suggest that mTOR, prob-
ably through mTORC2, preferentially regulates ENaC func-
tion rather than the associated K+ secretory pathway ROMK 
(26). Indeed, it was reported that PP242 substantially inhibited 

Figure 4. mTORC2 signals via phosphorylating the hydrophobic motif of SGK1 and PKCα. (A–F) Costaining of AQP2 (green, A and D) and phosphoryla-
tion of SGK1 at Ser422 (P-Ser422 SGK1; red, B and E) shows widespread colocalization in the CD (merge, C and F; Hoechst 33342, blue). (E) SGK1-specific 
P-Ser422 signal is lost in knockout animals. (G–L) Beside glomeruli (white asterisks), phosphorylation of PKCα at Thr657 (P-Thr657 PKCα; red, H and K) 
colocalizes with DBA (green, G and J; merge, I and L; Hoechst 33342, blue). (K) This mTORC2-specific phosphorylation is lost in conditionally knocked-out 
tubular cells (white arrows point to and white dashed lines indicate the outline of DBA-positive tubuli) but not in glomeruli (representative images of n = 3 
examined animals per genotype are shown). Scale bar: 100 μm.
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Distal tubular K+ secretion is mediated through two main 
channels: principal cell ROMK and intercalated cell BK chan-
nels (37). While ROMK is tightly regulated by K+ intake–depen-
dent aldosterone increase, BK is very sensitive to increases in 
urinary flow; both of these mechanisms lead to stimulation of 
K+ secretion. Rictorfl/fl Ksp-Cre mice present with virtually absent 
ROMK-attributable K+ currents in split-open tubules, severely 
reduced ROMK immunoreactivity in CCD tubular sections, 
and hyperkalemia upon increased K+ intake. Interestingly, this 
phenotype could be rescued by increases in Na+ intake, leading 
to a significantly enhanced urinary flow. Reduced phosphory-
lation of NCC at Thr58, and hence reduced Na+ uptake in the 
DCT and increased Na+ delivery to the CNT/CCD, additionally 
supports this compensatory mechanism (40). One might expect 
that reduced ROMK expression leads to upregulation of BK 
expression. However, we found reduced expression of the α-BK 
subunit under both LS/HK and triamterene, which might func-
tionally limit this flow-induced K+ secretory pathway. Hence, 
this may contribute to the decompensation of Rictorfl/fl Ksp-Cre 
mice under high-K+ conditions. Whether the observed reduction 

Na+ currents in isolated perfused CCDs but had no effect on 
ROMK-mediated currents. Yet, our findings clearly demon-
strate that mTORC2 deficiency dramatically reduces ROMK 
activity, while ENaC activity is only mildly impaired. While 
Gleason et al. used an acute pharmacological approach in mice 
and rats on diverse backgrounds (26), our genetic experiments 
were carried out on mice with a pure C57BL/6NCrl background 
using Ksp promoter-driven Cre expression. Due to the early 
onset of Cre expression at E12.5, chronic compensatory mecha-
nisms may contribute to the observed phenotype and need to 
be considered. Indeed, the increased plasma aldosterone levels 
in our mTORC2-knockout animals maintained on a standard 
salt diet may be interpreted as a compensatory mechanism 
for a reduced baseline ENaC activity in these animals. Thus, 
a 2.5-fold increased aldosterone concentration appears to be 
needed for normal expression levels of ENaC subunits at the 
apical membrane and normal ENaC-mediated whole-cell cur-
rents observed in mTORC2-knockout mice. This interpretation 
is consistent with the conclusion of Gleason et al. that mTORC2 
is relevant to maintain ENaC activity (26).

Figure 5. Apical membrane localization of ROMK is lost in Rictorfl/fl Ksp-Cre mice. Control mice exhibited a readily discernible apical membrane localiza-
tion of ROMK in AQP2-positive CCDs (red arrows; merge, A, E, I, and M; in the black and white images, only the ROMK fluorescence channel is shown; 
hence, the black intensities in the second and fourth columns correspond to the red ones in the first and third columns B, F, J, and N; AQP2, green; ROMK, 
red; Hoechst 33342, blue). This staining pattern was greatly reduced and in most instances virtually absent in Rictorfl/fl Ksp-Cre animals (merge, C, G, K, and 
O; in the black and white images, only the ROMK fluorescence channel is shown; hence, the black intensities in the second and fourth columns correspond 
to the red ones in the first and third columns, D, H, L, and P; AQP2, green; ROMK, red; Hoechst 33342, blue). Red arrows point to red dashed lines outlining 
AQP2-positive tubuli. ROMK expression in TAL segments was indistinguishable in both genotypes (red asterisks in B, F, J, N, D, H, L, and P; representative 
images of n = 3 examined animals per genotype are shown). Scale bar: 100 μm.
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Methods
Additional details are available in the Sup-
plemental Methods.

Animals. The genetic background of the 
mice was C57BL6/N, and littermate con-
trols were used whenever possible.

Physiological and biochemical analysis. 
All experiments were done according to 
protocols described in the Supplemental 
Methods.

Statistics. Data are expressed as mean 
± SEM. Statistical comparisons were per-
formed using the GraphPad Prism Soft-

ware Package 6 (GraphPad Software Inc.), with 2-tailed Student’s 
t test or ANOVA, including respective corrections, where indi-
cated. Differences with P values greater than 0.05 were consid-
ered significant. For patch-clamp experiments the nonparametric 
Kolmogorov-Smirnov test was used, and data are given as median 
(Q50, lower (Q25), and upper quartiles (Q75) due to the highly 
asymmetric current distributions.

Study approval. All animal experiments were conducted according 
to the National Institutes of Health Guide for the Care and Use of Labo-
ratory Animals (8th ed. The National Academies Press. 2011.) as well 
as the German law for the welfare of animals. All animal experiments 
were approved by local authorities (G-10/39 [Regierungspräsidium 
Freiburg], M 9/11 [Regierungspräsidium Tübingen], 621.2531.32-2/05 
[Bezirksregierung Mittelfranken, Ansbach]).
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in BK channel abundance is a direct effect of Rictor knockout or 
a consequence of overall deterioration of renal function in these 
mice will need further clarification.

Although, pharmacological inhibition might circumvent even-
tual adaptive changes inherent to genetic models, a nontargeted, 
systemic inhibition interferes with intercellular crosstalk and 
endocrine/paracrine factors and hence does not allow for specific 
delineation of cell-intrinsic signaling pathways. In addition, more 
recent findings indicate that rapamycin is not completely specific 
for mTORC1 but also inhibits mTORC2 under various conditions 
(10). Therefore, the comparison of pharmacologic and genetic 
studies highlights the complexity of mTOR signaling.

In summary, transgenic mouse models specifically ablat-
ing mTORC2 from distal tubular compartments revealed a 
cell-intrinsic role of mTORC2 as a key regulator of K+ han-
dling. Increased K+ levels result in an upregulation of mTORC2 
expression and activity. mTORC2 in turn phosphorylates PKCα 
and SGK1, thereby regulating ROMK abundance and current at 
the plasma membrane. Thus, mTORC2 signaling has a funda-
mental and unexpected role as a surveillance factor and regula-
tor of renal K+ handling.

Figure 6. mTORC2 is required to enable a 
barium-sensitive apical K+ conductance. (A) 
Representative whole-cell current record-
ings (holding potential [Vhold] of –60 mV) 
from split-open tubular segments from the 
CNT/CCD transition zone. Black bars indicate 
amiloride (Amil) application to determine 
ΔIamil. (B) Summary data from similar experi-
ments as those shown in A demonstrate 
that ΔIamil values are similar in control and 
Rictorfl/fl Ksp-Cre mice. (C) Representative 
current traces from outside-out patches (Vhold 
of –60 mV) from split-open tubular segments 
from the CNT/CCD transition zone. Gray bars 
represent Ba2+ application to determine ΔIBa. 
Washout of the inhibitor causes appearance 
of an inward current component, which is 
abolished by Ba2+ reapplication. (D) Sum-
mary data from similar experiments as those 
shown in C demonstrate that ΔIBa is signifi-
cantly suppressed in outside-out patches 
from Rictorfl/fl Ksp-Cre mice (median, 1.3 
pA; Q25, 0 pA; Q75, 7 pA vs. median, 19 pA; 
Q25, 14 pA; Q75, 34 pA in control; #P < 0.05, 
Kolmogorov-Smirnov test; n = 10–24).
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