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Cloned in 1994, the ob gene encodes the protein hormone leptin, which is produced and secreted by white adipose tis-
sue. Since its discovery, leptin has been found to have profound effects on behavior, metabolic rate, endocrine axes, 
and glucose fluxes. Leptin deficiency in mice and humans causes morbid obesity, diabetes, and various neuroendo-
crine anomalies, and replacement leads to decreased food intake, normalized glucose homeostasis, and increased 
energy expenditure. Here, we provide an update on the most current understanding of leptin-sensitive neural path-
ways in terms of both anatomical organization and physiological roles.

Introduction
The nervous system regulates energy balance at the organis-
mal level by constantly adjusting energy intake, expenditure, 
and storage. The influence of the nervous system over meta-
bolic functions was first suggested at the beginning of the 20th 
century when excessive adiposity was associated with pituitary 
tumors and injury to the hypothalamus (1). However, it was not 
until the 1940s that selective surgical lesions of certain hypotha-
lamic areas were found to result in extreme obesity or leanness 
in rats (2, 3). Over the last few decades, numerous discoveries 
substantially extended our understanding of the neural control 
of metabolism. However, it is safe to say that none were more 
important than the cloning of the ob gene by Friedman and col-
leagues in 1994 (4). The ob gene encodes the protein leptin, which 
is a hormone produced and secreted by the white adipose tis-
sue, and consequently, its circulating levels are closely related to 
body fat mass (5, 6). Leptin deficiency in mice homozygous for 
a mutant ob gene (ob/ob mice) causes morbid obesity, diabetes, 
and various neuroendocrine anomalies, and leptin replacement 
leads to decreased food intake, normalized glucose homeostasis, 
and increased energy expenditure (7–10). Several splice variants 
of the leptin receptor have been identified, and the “short forms” 
are widely expressed in multiple tissues (11). The “long form” 
of the leptin receptor encodes a protein with a longer cytoplas-
mic domain (OB-Rb) that is highly expressed in particular sites 
within the CNS (refs. 10, 12, and Table 1). The short forms of the 
leptin receptor are also present within the CNS (11), but OB-Rb 
is sufficient for leptin actions on metabolism (13, 14). OB-Rb 
is a type 1 cytokine receptor, which stimulates the JAK/STAT3 
pathway (15) and PI3K (16, 17). Leptin induces transcriptional 
changes of several genes via the JAK/STAT3 pathway, and rapid 
changes in cellular activity and membrane potential may under-
lie the acute actions of leptin (18). While actions of this hormone 
in peripheral tissues have been identified, studies in genetically 
modified mice have demonstrated that leptin action only in the 
CNS is sufficient to regulate body weight, feeding, energy expen-
diture, and glucose metabolism (13, 19–21).

Since leptin is clearly not the only metabolic signal acting on 
the brain, the range of its effects on behavior, metabolism, and 
endocrinology is truly remarkable. In addition, leptin has effects 

on reproduction and immunity that are beyond the scope of this 
article. The goal of this article is to provide an update on the most 
current understanding of leptin-sensitive neural pathways both in 
terms of anatomical organization and physiological roles.

Physiological roles of rising and falling levels of leptin
To forestall starvation, mammals have developed sophisticated 
biological mechanisms of energy conservation and repartition-
ing to respond to low levels of energy availability. Starvation leads 
to a rapid decrease in serum leptin level prior to the depletion 
of adipose tissue mass (22). Ahima and colleagues hypothesized 
that this fall in leptin was a starvation signal that may activate the 
aforementioned starvation response programs (22). Consequently, 
endocrine, behavioral, and autonomic responses induced by fast-
ing can be blunted by repletion of leptin during the fast (22). Thus, 
the changing level of circulating leptin is a key signal to the brain 
regarding energy stores, and a fall in leptin results in the stereo-
typed responses characteristic of starvation. Low leptin levels can 
also be the result of rare genetic disorders such as lipodystrophies 
and congenital leptin deficiency (23, 24). Leptin administration 
corrects many of the metabolic anomalies seen in lipodystrophic 
patients including diabetes, dyslipidemia, and hepatic steatosis 
(25, 26) and completely reverses the obese phenotype of leptin-
deficient individuals (27, 28).

On the other end of the spectrum of energy balance, overnutri-
tion is becoming increasingly prevalent and, strikingly, it is pre-
dicted that individuals who are considered clinically obese will rep-
resent 10% of the world adult population by 2015 (29). Although 
genetic predispositions to obesity exist, hyperphagia is admit-
ted to be the most direct cause for these unprecedented rates of 
obesity (30). As a logical consequence of their increased fat mass, 
obese individuals systemically show elevated serum leptin levels 
(6, 31). However, for reasons that are not fully understood, obese 
individuals do not show diminished appetite and increased energy 
expenditure, as would be predicted based on their increased leptin 
levels (6, 31). Likewise, in animal models, high-fat diet–induced 
hyperleptinemia aggravates weight gain and metabolic anomalies 
(32–34). In the face of these observations, researchers elaborated 
the concept of leptin resistance, which refers to the inability of 
obese individuals and high-fat–fed animals to respond to endoge-
nous or exogenous leptin (35). The cellular mechanisms initiating 
leptin resistance is an active area of study, and the theoretical and 
experimental basis has recently been reviewed in detail (35).
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Mapping leptin-sensitive neural pathways
The distribution and chemical identity of neurons able to respond 
to leptin have been well described in rodents (Table 1). To date, 
leptin-sensitive neurons located in the arcuate nucleus of the hypo-
thalamus (ARH) have probably received the most attention from 
investigators in the field. The ARH contains proopiomelanocortin 
(POMC) neurons, which produce the anorectic peptide α-melano-
cyte–stimulating hormone (αMSH), an agonist of the melanocor-
tin-4 receptor (MC4R) (36, 37). Uniquely, the ARH also contains 
neurons that produce the orexigenic peptides neuropeptide Y (NPY) 
and agouti-related peptide (AgRP). The latter acts as an endogenous 
MC4R antagonist or inverse agonist (38). Persuasive evidence has 
established that the activity (both transcriptional and membrane 
potential) of both populations of neurons is oppositely regulated by 
leptin (18, 36). The neurochemical identity of leptin-sensitive neu-
rons outside the ARH is still somewhat rudimentary but has begun 
to be deciphered using traditional neuroanatomical methods and 
genetically modified reporter mice. Similarly, genetically modified 
mice have emerged as particularly valuable tools to assess the axonal 
projections of identified leptin-sensitive neurons (39, 40). Table 1  
summarizes the distribution, neurochemical identity, and axonal 
projections of leptin-sensitive sites in the rodent brain.

Identification and segregation of the leptin-sensitive 
pathways regulating energy balance
Glucose homeostasis. Early studies suggested that diabetes charac-
teristically seen in ob/ob mice was not solely due to hyperphagia 
and increased adiposity (41). In support of this, recent insulin-
clamp studies revealed that leptin can modify hepatic glucose 
production by simultaneously increasing gluconeogenesis and 
decreasing glycogenolysis in rats and mice (42–44), suggesting 
that leptin has antidiabetic actions. Leptin (alone or in combi-
nation with insulin) can dramatically improve glycemic control 
in animal models of type 1 diabetes (45–47). Interestingly, the 
chronic intracerebral administration of leptin (48) and virally 
mediated overexpression of leptin within the brain (49, 50) 
both exert similar beneficial effects on glucose homeostasis. 
Consistent with the idea that the antidiabetic action of leptin 
is centrally mediated, mice with OB-Rb expression restricted to 
the brain are capable of maintaining normal glucose homeo-
stasis (14, 20, 51).

Some of the leptin effects on gluconeogenesis may be MC4R 
dependent (52), thus implicating ARH neurons in the antidiabet-
ic actions of leptin. Whereas the Cre-mediated deletion of OB-Rb  
only in POMC neurons results in mild obesity and no major 

Table 1
Anatomical distribution of leptin-expressing sites and known neurochemical identity and afferent projections of  
OB-Rb–expressing neurons in the adult rodent brain

OB-Rb levels	 Leptin-sensitive sites	 Neurochemical identity	 Identified target sites	 References
High expression
	 PMV	 CART	 POA, AVPV	 12, 40, 91, 113
	 ARH	 POMC/CART, AgRP/NPY	 LHA, PVH, NTS	 12, 58, 91, 114–116
	 DMH	 –	 PVH, ARH, POA, PAG, PVT, BST, PC	 12, 39
	 VMH	 Dyn	 SPVZ	 12, 91, 117, 118
	 MEPO	 –	 –	 91
Moderate expression
	 RCA	 POMC/CART	 Spinal cord	 61
	 LHA ant	 –	 VTA, DR, PAG, SNC, DMH, LHA	 77, 119
	 PH	 –	 –	 12, 91
	 EW	 –	 –	 91
	 PAG	 –	 –	 91, 120
	 VTA	 TH	 CeA	 91, 121
	 DR	 –	 –	 12, 91
	 NTS	 GLP1A, POMCB	 –	 118, 120, 122–124
	 LPB	 CCK	 –	 91, 118
	 DG, CA1, CA3C	 –	 –	 12, 91
	 SNC	 TH	 –	 12, 91
	 Cortices and claustrumC	 –	 –	 12, 91
Low expression
	 DHA	 –	 –	 91
	 Pe	 –	 –	 12, 91
	 PVNpvD	 TRH	 –	 66, 125
	 APD	 –	 –	 123
	 LSV	 –	 –	 91
	 DMV	 –	 –	 123

AP, area postrema; AVPV, anteroventral periventricular nucleus; BST, bed nucleus of the stria terminalis; CA, Ammon’s horn; CART, cocaine- and 
amphetamine-regulated transcript; CeA, central amygdala; DG, dentate gyrus; DHA, dorsal area of the hypothalamus; DR, dorsal raphe; Dyn, dynorphin; 
EW, Edinger-Westphal nucleus; GLP1, glucagon-like peptide 1; LHA ant; anterior part of the LHA; LPB, lateral parabrachial nucleus; LSV, ventral nucleus 
of the lateral septum; MEPO, medial preoptic nucleus; PAG, periaqueductal area; PC, pre-coeruleus; Pe, periventricular hypothalamus; PH, posterior 
hypothalamus; POA, preoptic area; PVNpv, parvicellular part of the paraventricular nucleus of the hypothalamus; PVT, paraventricular thalamus; RCA, ret-
rochiasmatic area; SNC, substantia nigra pars compacta; SPVZ, subparaventricular zone; TH, tyrosine hydroxylase; TRH, thyrotropin-releasing hormone; 
PMV, ventral premammillary nucleus. AOnly in mouse. BControversial. CObrb mRNA is expressed, but signaling activity remains to be shown. DOnly in rat. 
Dashes indicate “unidentified.”
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effect on glucose homeostasis in male mice and impaired glucose 
tolerance in females (53, 54), mice lacking OB-Rb in both POMC 
and AgRP neurons show hyperinsulinemia (55). More striking-
ly, rescuing leptin receptor expression only in ARH neurons of  
OB-Rb–deficient rodents completely normalizes their glucose and 
insulin levels (20), improves their hepatic insulin sensitivity, and 
reduces gluconeogenesis (51). Together, these studies clearly sup-
port the key role of ARH neurons in mediating the action of leptin 

to regulate glucose homeostasis and insulin levels (Figure 1).  
At least in mice, these effects can be largely independent of modi-
fications in feeding and body weight.

Based on the known importance of the parasympathetic out-
flow to the liver in regulating glucose production in several differ-
ent species (56, 57), it has been hypothesized that the vagus nerve 
is an important efferent arm of the nervous system mediating the 
antidiabetic actions of leptin. For example, the effects of leptin 

Figure 1
Simplified neuroanatomical model of leptin action within the CNS in the regulation of metabolic functions. Leptin secreted by adipocytes is trans-
ported across the blood-brain barrier to act on specific leptin-sensitive brain sites (yellow circles). In particular, leptin exerts opposite effects on 
the activity of ARH neurons that produce αMSH and AgRP, two important endogenous ligands of the MC4R (MC4R-dependent pathways appear 
in red). In response to leptin, these peptides are released in brain sites important in the control of glucose homeostasis, energy expenditure, 
and feeding within the hypothalamus and brainstem. Recent studies also found that leptin signaling in the VTA and LHA plays a critical role in 
feeding and reward processes. Finally, different branches of the autonomic nervous system make connections with peripheral tissues (liver, 
pancreas, etc.) and ultimately mediate leptin actions on peripheral metabolic processes. Overall, leptin modulates the activity of intricate neural 
circuits that are distributed through many different brain regions. Tg, trigeminal nerve; X, vagus nerve; SNS, sympathetic nervous system; omn, 
oral masticatory nuclei; rvlm, rostroventral medulla; CeA, central amygdala.
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on hepatic glucose fluxes is abrogated when the hepatic branch 
of the vagus nerve is sectioned in rats (51). Although the leptin-
responsive cell group mediating these responses remains to be 
identified, this effect could be mediated by POMC neurons inner-
vating the dorsovagal complex (58), a brain region that contains 
the dorsal motor nucleus of the vagus nerve (DMV) (Figure 1).  
Many DMV neurons express MC4R and innervate the hepatic 
artery in mice (59), thus providing an anatomical link from leptin-
sensitive pathways to the liver.

It is also important to note that the sympathetic nervous system 
is a potentially important player in the antidiabetic action of leptin. 
For example, Fan and colleagues (60) demonstrated that the insu-
lin-lowering effects of central leptin are blocked by the concomitant 
administration of α-adrenergic antagonist. This is in accordance 
with the fact that leptin-sensitive POMC neurons located in the 
rostral ARH project to pre-ganglionic sympathetic neurons located 
in the intermediolateral column (IML) (61). The latter neurons are 
in an ideal position to regulate the sympathetic outflow to tissues 
important in glucose homeostasis (i.e., pancreatic islets) (Figure 1).

Leptin can also regulate glycogenolysis in a MC4R-indepen-
dent manner (52), implying that neurons outside the ARH are 
important in the antidiabetic actions of leptin. Along these lines, 
it is interesting that leptin administered into the ventromedial 
nucleus of the hypothalamus (VMH) stimulates glucose uptake in 
peripheral tissues (62–64). In addition, the loss of the leptin sig-
naling inhibitor SOCS3 only in VMH neurons leads to improved 
glucose homeostasis (65). Surprisingly, the effect of intra-VMH 
leptin on glucose uptake is MC4R dependent (64) and requires 
an intact sympathetic nervous system (62). This could mean that 
VMH leptin–sensitive neurons regulate glucose metabolism via 
an anatomical relay involving POMC neurons (Figure 1). Impor-
tantly, the neurons responsible for the MC4R-independent effect 
of leptin on glucose homeostasis have not been identified. The 
paraventricular hypothalamus (PVH) is a possible candidate, as 
it sends a direct projection to pre-ganglionic autonomic neurons. 
Although few PVH neurons express OB-Rb in rodents (66), many 
leptin-sensitive sites (e.g., dorsomedial nucleus of the hypothala-
mus [DMH]) are connected to the PVH, and future experiments 
are warranted to delineate the contribution of these brain sites to 
the antidiabetic action of leptin.

Food intake. The existence of hypothalamic centers regulating 
hunger and satiety has been appreciated for decades. This sim-
ple but attractive concept has been gradually replaced by more 
elaborate neuroanatomical models, which have incorporated the 
concept of the distributed nature of the neuronal networks that 
control food intake (67). Leptin can modulate several different 
aspects of feeding behavior, including meal size (68, 69), food 
reward (70, 71), and food preference (72, 73). Collectively, these 
observations suggest that the neural circuits underlying leptin 
actions on food intake are highly complex. In agreement with 
such a view, the microinjection of leptin directly into several dif-
ferent brain sites distributed in the hypothalamus (ARH, VMH, 
lateral hypothalamic area [LHA]), midbrain (ventral tegmental 
area [VTA]), and brainstem (nucleus of the solitary tract [NTS]) 
can reduce food intake (74–77). Initially, the exact role of leptin 
signaling in each of these sites was extrapolated based their 
known involvement in specific aspects of feeding behavior. More 
recently, genetic approaches have been employed to identity the 
exact brain sites that are important for leptin regulatory effects 
on feeding behavior.

ARH neurons play a key role in regulating feeding (36, 37). While 
leptin reduces feeding when directly administered into the ARH 
(58, 75), numerous studies have demonstrated that leptin signal-
ing in ARH neurons reduces only short-term, but not long-term, 
food intake. First, the deletion of OB-Rb and STAT3 specifically 
from POMC and/or AgRP neurons in genetically modified mice 
produces no significant alteration of long-term food intake (53, 
55, 78, 79). Second, mice genetically engineered to overexpress 
SOCS3 only in POMC neurons show a blunted response to the 
acute anorectic effects of leptin (80). Third, mice lacking key mol-
ecules downstream of the OB-Rb signaling pathway (i.e., STAT3, 
PI3K) in AgRP or POMC neurons similarly show attenuated 
response to acute but not chronic leptin (79, 81). Finally, rescuing 
OB-Rb expression in ARH neurons of OB-Rb–deficient rodents 
only modestly reduces their hyperphagia (19, 20).

The role of leptin in the control of short-term feeding is inter-
esting, given that ingestive behavior is commonly perturbed in 
obese states (82). The effect of leptin on short-term feeding likely 
involves projections from ARH neurons to brainstem sites involved 
in satiation mechanisms (Figure 1). It has been noted that leptin 
can amplify the anorectic effects of cholecystokinin (CCK) (83–
85), a prototypical satiation factor produced by intestinal cells in 
response to meal ingestion. The anorectic effects of CCK are pri-
marily mediated by vagal afferents innervating the intestines which 
are connected to the NTS, its primary relay within the brainstem. 
There is also now convincing evidence that leptin potentiates vis-
ceral neurotransmission received at the level of the NTS (86–88). 
This effect could be partly mediated by the stimulation of ARH 
melanocortin neurons, which project to the NTS, since mice lack-
ing OB-Rb in both AgRP and POMC neurons show increased meal 
sizes and blunted response to the early anorectic effects of leptin 
(55). In addition, leptin directly injected into the dorsal vagal com-
plex enhances CCK-induced anorectic effects (89), and knocking 
down leptin receptor expression in the dorsal vagal complex of rats 
eliminates CCK-induced feeding suppression (90). Collectively, 
these data suggest that leptin acts on a distributed network of 
neurons in the brainstem and hypothalamus to regulate feeding, 
and reciprocal connections between these two brain regions assure 
proper coordination of food intake over longer periods of time.

Leptin signaling is also present in neurons classically implicated 
in reward, such as dopaminergic neurons in the VTA (ref. 91 and 
Figure 1). Microinjection of leptin into this site does reduce feed-
ing, and knocking down OB-Rb only in the VTA leads to increased 
feeding (71). Another site important in food reward is the LHA, 
which for many years was referred to as the “hunger center” because 
discrete lesions at this site result in severe cachexia and loss of appe-
tite (2). Leptin reduces feeding when directly administered into the 
LHA, and neurons bearing OB-Rb in the LHA send projections 
to the VTA (77). Reward-seeking behaviors can be elicited in rats 
trained to press a lever that stimulates an electrode implanted in 
the LHA (self-stimulation experiments) (92). Interestingly, this 
type of experiment has been used to demonstrate that intracere-
bral leptin administration can reduce the effectiveness of reward 
mechanisms (93). Together, these studies suggest that leptin can 
directly regulate reward mechanisms at the level of both the VTA 
and the LHA. Needless to say, food reward cannot be dissociated 
from satiety, taste, and homeostatic needs, and numerous psycho-
logical and environmental factors may also influence food reward. 
Overall, the area of research on the link between leptin and reward 
still remains in its infancy.
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Body weight. Body weight control is exceptionally complicated 
and is determined by the sum of multiple metabolic processes 
including whole body energy expenditure, body temperature, loco-
motor activity, cardiorespiratory parameters, and lipogenesis. All 
the aforementioned physiological parameters are under the con-
trol of the sympathetic nervous system, and observed changes in 
these parameters are often considered to be indirect measures of 
sympathetic outflow. Hence, it is often difficult to dissociate the 
reciprocal influence that the aforementioned parameters have on 
one another. Several lines of evidence suggest that leptin directly 
regulates energy expenditure by stimulating the activity of the sym-
pathetic nervous system to its target tissues (94–97). Although pre-
ganglionic sympathetic neurons do not express OB-Rb, leptin-sen-
sitive neurons are found in several brain sites connected to the IML 
(e.g., PVH, NTS, etc.), and therefore leptin signaling in any of these 
sites can potentially influence sympathetic outflow (Figure 1).  
The contribution of the melanocortin system to leptin effects on 
energy expenditure and body weight is supported by numerous 
pharmacological studies (98–100). A number of parallel genetic 
studies similarly demonstrated that locomotor activity, temper-
ature, or energy expenditure are changed in mice with modified 
expression of OB-Rb or its signaling molecular partners in ARH 
neurons (17, 20, 55, 79, 101, 102).

The VMH appears to be another important site of action in 
the control of energy expenditure. For example, mice that lack 
OB-Rb in VMH neurons show more severe obesity and low-
ered energy expenditure on a high-fat diet (103, 104). While the 
exact pathway linking VMH neurons to the sympathetic ner-
vous system remains to be worked out, the VMH appears to be 
an essential component of a circuit necessary to resist high-fat 
diet–induced obesity. Of note, injection of leptin into the NTS 
also stimulates energy expenditure (100). However, knockdown 
of leptin receptor expression in the NTS in rats had no effect on 
energy expenditure, activity, or body temperature (90). The latter 
contradictory results illustrate that there are still important gaps 
in our understanding of leptin effects on body weight, and future 
experiments are warranted to systematically map leptin signal-
ing in nuclei with known sympathetic efferent connections (e.g., 
NTS, rostral ventrolateral medulla, etc.).

Perspectives
Over the past 16 years, researchers have described with exquisite 
detail the neural pathways that contribute to leptin actions on 
metabolism (at least in rodents). It appears from these studies that 
each of the actions of leptin on metabolism is supported by neurons 
distributed in the hypothalamus, midbrain, and brainstem. More-
over, several recent studies have demonstrated that leptin-sensitive 
neural pathways are remarkably plastic in response to changes in 
leptin levels in rodents during postnatal development and adult-

hood (105–107). This suggests that morphological changes pro-
gressively develop in the brain during obesity, and further inquiry 
into the cellular mechanisms linking obesity, neural plasticity, and 
food craving is urgently needed. As mentioned before, new appli-
cations for leptin therapy have been suggested based on animal 
research, including the treatment of type 1 diabetes (46). Finally, 
recent evidence suggests that certain gut peptides (e.g., ghrelin) act 
in an additive manner with leptin to regulate energy balance (108), 
which may lead to the future development of combination thera-
pies to enhance leptin sensitivity in obese states.

Our current understanding of leptin action on energy bal-
ance is largely based on animal research and, therefore, one may 
wonder how much we have really learned about leptin action in 
the human brain. Most of our understanding of leptin action 
in the human brain derives from brain imaging techniques 
(109, 110). Brain activity can be monitored in individuals receiv-
ing either leptin or placebo during the viewing of food-related 
stimuli. These types of studies established that leptin modulates 
the activity of regions involved in the neural representations of 
hunger and satiety and the anticipation of reward including the 
ventral striatum, insula, parietal and temporal cortex, and pre-
frontal cortex regions (109, 110). Rosenbaum and colleagues 
(111) also showed that dieting-induced weight loss changes the 
activity of many of the aforementioned brain regions, and most 
of these can be reversed by leptin administration. Strikingly, 
these leptin-induced brain changes are correlated with enhanced 
weight loss and catabolic processes (112), which suggests that 
leptin administration in obese individuals can be useful in the 
context of weight loss maintenance. These exciting data warrant 
further studies on leptin action in the human brain.

In conclusion, it is safe to say that the control of energy balance 
is one of the most exciting areas of neuroscience research when 
one notes the breadth of the field, which spans studies of single 
genes, genetically modified animal models, and humans with 
identified single-gene mutations that cause profound defects in 
energy balance control. This field of study will certainly continue 
to advance our understanding of metabolism and will give the 
medical community new opportunities to design more efficient 
therapies to prevent and/or cure obesity as well as other metabolic 
and eating disorders.
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