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The urgent need for better cancer treatments has stimulated interest in employing small-animal models to evaluate 
potential drug therapies. Robust mouse models of many human cancers have been generated using sophisticated 
technologies for engineering germ-line mutations. As we enter into an age of targeted therapeutics, these strains 
provide novel platforms for validating new anticancer drugs, assessing therapeutic index, identifying surrogate 
markers of tumor progression, and defining epigenetic and environmental influences on tumorigenesis.

The availability of strains of genetically engineered mice (GEM) 
that develop a spectrum of cancers similar to those found in 
humans offers an unprecedented opportunity to efficiently 
evaluate the efficacy and therapeutic index of novel anticancer 
therapies in preclinical models in advance of human trials. While 
straightforward in principle, executing preclinical studies in mice 
that allow for meaningful and immediate application to the treat-
ment of human cancer is difficult. Moreover, the potential use of 
GEM cancer models to accelerate the process of bringing effective 
new treatments to patients is largely theoretical, as few examples 
exist in which mouse preclinical data has been successfully trans-
lated to clinical practice.

The current development process for anticancer drugs
Taking a drug from discovery to market is an arduous process 
that frequently takes longer than 15 years and costs more than 
$800 million. Most agents that are advanced into early-phase 
human clinical trials fail. Recent advances in the fields of cancer 
biology and high-throughput screening have identified numer-
ous potential molecular targets for drug discovery; however, 
most of the proteins and pathways deregulated in cancer cells 
also have essential roles in normal cells. It is therefore difficult to 
predict when a drug will prove tumor-selective. Moreover, devel-
oping new therapies against specific molecular abnormalities in 
well-defined subsets of cancers can be prohibitively expensive. 
The use of GEM cancer models as an initial “filter” to identify 
tumors and molecular targets that, when inhibited, will selec-
tively kill tumor cells is one potential strategy for streamlining 
the overall process of cancer drug development.

Preclinical mouse models of human cancer
Numerous small-animal models of human cancer have been gen-
erated. These include inbred strains that spontaneously develop 
cancer (1–4), rodents in which cancer is caused by intrauterine 
or postnatal exposure to chemical mutagens (5–9), and mice in 

which tumors are produced by viral or bacterial infection (10–13). 
In addition, xenograft models that were generated by directly 
implanting cancer cell lines established from human tumors into 
mice have been widely used for drug discovery (14–17). The major 
limitations of these explant models are the requirement for an 
immunocompromised host and the inability of these models to 
fully recapitulate the complex relationship between the tumor and 
its microenvironment (e.g., angiogenesis). Most importantly, the 
ability of xenografts to accurately predict drug efficacy in human 
cancer patients has been disappointing (18).

GEM cancer models are becoming increasingly sophisticated 
in their ability to accurately mimic the histology and biological 
behavior of human cancers. Numerous tissue-specific GEM mod-
els have been developed that exhibit many biologic hallmarks of 
human cancer, including angiogenesis and stromal interactions, 
as well as similar histopathologic and genetic abnormalities (19). 
The major advantages of GEM models are that: (a) the initiating 
genetic event is known; (b) the mice are immunocompetent; and 
(c) the tumors develop spontaneously in their appropriate tis-
sue compartments. Moreover, GEM cancer models, which allow 
assessment of therapeutic efficacy on a uniform genetic back-
ground, are particularly useful for performing preclinical stud-
ies of rare cancers and for assessing synergy between therapeutic 
agents. They can also potentially provide the tools needed to learn 
more about the histologic and biochemical effects of specific 
agents prior to human testing.

While GEM models offer many advantages, the cancers typi-
cally arise from genetic events that are expressed simultaneously 
in many cells throughout an animal or in an entire tissue. By con-
trast, most human tumors are believed to arise from single cells or 
from a small population of mutant cells. To overcome this limita-
tion, strategies have been developed that allow mutant alleles to be 
expressed in small populations of cells in vivo (20, 21).

Opportunities to employ mouse models
The availability of robust GEM models facilitates a detailed analy-
sis of human cancer that cannot be easily accomplished by study-
ing primary human tumors (see Opportunities provided by employing 
GEM cancer models). First, the ability to more effectively treat human 
cancers requires a detailed understanding of molecular and cellular 
pathogenesis to identify specific molecular targets. Second, there 
is also a great need to define those individuals at greatest risk for 
developing cancer as well as those most likely to respond to any 
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given therapeutic regimen. These studies require large numbers 
of individuals and are often not possible for less common cancers. 
Last, the identification of surrogate markers of tumor formation 
and early response to therapy, which would have tremendous 
impact on current treatment strategies, is another unmet need.

Evaluation of standard human antitumor therapies. One of the often 
neglected uses of GEM cancer models is the validation of conven-
tional therapies employed for the treatment of cognate tumors 
in humans. For example, accurate GEM models of astrocytoma 
or pancreatic cancer should ideally respond to the same treat-
ments currently used to treat these cancers (i.e., temozolomide 
and gemcitibene, respectively). In addition, GEM models afford 
the opportunity to define the mechanism(s) underlying the anti-
tumor effects. Tumors from mice treated with anticancer thera-
pies can be analyzed to determine whether regression results from 
decreased cell growth, increased cell death, decreased tumor angio-
genesis, or necrosis. Failure to observe any effects on GEM tumors 
may reflect problems with bioavailability (e.g., inability to cross 
the blood-brain barrier), differences in the metabolic processing 
of drugs in rodents (e.g., pharmacokinetic and pharmacodynamic 
[PK/PD] issues), and/or genetic differences between mouse strains 
that dictate the response to therapy (e.g., modifier loci).

Experience with a mouse model of acute promyelocytic leuke-
mia (APL) suggests that GEM models respond to human cancer 
treatments and can be used to improve therapy. In APL, blasts 
are arrested at the promyelocytic stage of differentiation due to 
chromosomal translocations that fuse the retinoic acid receptor alpha 
(RARA) gene to a variety of partner genes including promyelocytic 
leukemia (PML) and promyelocytic leukemia zinc finger (PLZF). All-
trans-retinoic acid (ATRA) induces complete remissions in approxi-
mately 80% of patients with APL who have a PML-RARA transloca-
tion by relieving the differentiation block (22) but does not induce 
remission in those individuals with PLZF-RARA fusions (23). Simi-
larly, ATRA induces remissions in PML-RARA transgenic mice but 
is ineffective in a PLZF-RARA strain that also develops APL (24). In 
addition, mouse models of APL have been harnessed to test new 
therapeutic approaches such as arsenic trioxide (As2O3) and the 
potential synergy between ATRA and As2O3 (25, 26).

The role of specific cancer genes. GEM strains have been generated 
that model the inactivation of genes mutated in inherited cancer 
syndromes (e.g., neurofibromatosis 1 [NF1], NF2, APC), in sporadic 
cancers (e.g., KRAS, PML-RARA), and in both types of cancer (e.g., 
TP53) (27–46). GEM models based on these tumor suppressors 
and oncogenes provide unique opportunities to clearly define the 
causative role of each of these genetic changes in tumor forma-
tion and progression. This information is critical for the design of 
targeted (biologically based) therapies for individual cancers with 
these specific tumor-associated mutations.

Target validation. GEM cancer models can be used to determine 
whether the success or failure of a given therapy reflects the ability 
of the drug to reach the tumor and inhibit its target. An illustra-
tive example of how GEM cancer models can provide insights into 
mechanisms of drug activity comes from studies that evaluated 
the efficacy and putative biochemical targets of farnesyltransferase 
(FTase) inhibitors (FTIs). Ras processing is initiated by cytosolic 
prenyltransferases, which attach either a farnesyl or geranylgera-
nyl isoprenoid lipid to the thiol group of the cysteine. Geranyl-
geranyl transferase 1 (GGTase-1) and FTase catalyze the transfer 
of isoprenoid groups, which are donated by geranylgeranyl pyro-
phosphate and farnesyl pyrophosphate, respectively. FTIs were 
developed as cancer therapeutics based on their potential as Ras 
inhibitors in xenograft models. However, KRAS and NRAS are 
also good GGTase-1 substrates and are processed by this enzyme 
when FTase is inhibited. Preclinical studies of the efficacy of FTIs 
gave variable results in transgenic mouse models of breast cancer 
induced by expressing oncogenic HRAS or KRAS from the murine 
mammary tumor virus promoter (47–49) and in a model of myelo-
proliferative disease induced by inactivating the Nf1 tumor sup-
pressor (50), which encodes a GTPase-activating protein that nega-
tively regulates RAS signaling. Importantly, careful biochemical 
investigation of tumor tissues from these mouse models unequiv-
ocally showed no inhibition of KRAS or NRAS processing at the 
maximally tolerated dose (MTD) of FTI. Based on these data, it 
was concluded that any therapeutic effects of FTIs were due to 
“off-target” activities that were not related to the original goal of 
inhibiting hyperactive RAS.

Defining the discrete steps of tumorigenesis. GEM cancer models can be 
used to dissect the cellular and molecular changes associated with 
each stage of neoplasia, including tumor formation, tumor main-
tenance, and malignant progression. Studies focused on defining 
the events associated with tumor formation in multistep cancers 
are essentially chemoprevention investigations. Direct chemopre-
vention studies in people at risk for cancer are difficult, owing to 
the genetic heterogeneity in human populations and the difficul-
ties in accurately measuring exposure, which necessitate large and 
enormously expensive long-term studies. By contrast, experiments 
in GEM cancer models can be performed on a uniform genetic 
background in which environmental exposures are rigorously con-
trolled. GEM cancer models have been employed to establish causal 
relationships with environmental exposures (e.g., asbestos in meso-
thelioma, tobacco and lung cancer; diet in colon cancer) (51–55).

The ability of a tumor to continue to survive and proliferate in an 
otherwise inhospitable environment requires additional molecular 
and cellular changes. Studies of tumor maintenance are typically 
focused on defining the key signals required for these processes and 
form the basis for targeted chemotherapy. Studies in GEM models 

Opportunities provided by employing GEM cancer models

	 Provide initial “filter” to identify molecular targets that, when inhibited, kill cancer cells
	 Investigate mechanisms underlying responsiveness and resistance to conventional cancer therapies
	 Define discrete steps of tumorigenesis

	 Determine the role of the microenvironment in tumor formation and progression
	 Identify surrogate markers of tumor growth and response to therapy
	 Define epigenetic and environmental influences on tumorigenesis
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and in human patients have implied that molecular changes impor-
tant for cancer formation are also necessary for maintenance. For 
example, studies in which tetracycline-regulatable alleles of onco-
genic RAS and MYC were “shut off” in established tumors resulted 
in dramatic tumor regression (56–58). Furthermore, the emergence 
of imatinib-resistant mutant alleles of BCR-ABL in patients with 
chronic myeloid leukemia (59, 60) argues strongly that the cancer-
initiating mutation remains central to the tumor’s growth advan-
tage. However, other data suggest that cancer cells can escape from 
dependence on the initiating oncogenic lesion under some circum-
stances (61, 62). The exact mechanisms underlying “tumor escape” 
have not been fully elucidated; but they may reflect a change in the 
histologic phenotype of the tumor, loss of expression of the initiat-
ing oncogene, or the acquisition of additional genetic changes (63). 
The ability of some cancers to free themselves from dependence on 
the initiating molecular event likely has implications for the design 
of targeted therapies for recurrent tumors.

Tumors frequently evolve from a benign neoplastic lesion to a 
more malignant cancer. This progression involves the acquisition 
of additional genetic changes, which also serve as targets for che-
motherapeutic drug design. For example, during the progression 
to malignant cancer, some low-grade astrocytomas somatically 
acquire a constitutively active version of the EGFR. This signature 
genetic event formed the basis for the development of targeted 
therapies directed against this mutant EGFR in both mice and 
humans (64, 65). GEM models were important in demonstrating 
that the EGFR mutation is a causative genetic change that acceler-
ates malignant transformation (66, 67).

Tumor microenvironment. GEM cancer models have been powerful 
tools for examining the contribution of the tumor microenviron-
ment to tumor formation. Studies of peripheral and central ner-
vous system tumors in a mouse model of the NF1 familial cancer 
syndrome demonstrated that tumor formation requires that loss 
of Nf1 expression in Schwann cells (neurofibromas) or astrocytes 
(optic glioma) occur in the context of a heterozygous germline Nf1 
mutation (43, 44). These data demonstrate that heterozygous Nf1 
mutant cells in the microenvironment of preneoplastic lesions 
participate in tumorigenesis. Nonmalignant stromal cells also con-
tribute to mammary carcinoma, in which loss of TGF-β receptor 
expression in fibroblasts promotes mammary ductal carcinoma 
growth and invasion by upregulating specific signaling networks 
(68, 69). Last, angiogenesis plays a fundamental role in tumor for-
mation and progression and has formed the biological basis for 
numerous clinical trials using antiangiogenic therapies (70, 71). 
GEM models have been instructive in defining the molecular basis 
for new blood vessel formation by tumors and the impact of angio-
genesis on tumor progression (72, 73).

Radiologic and serum biomarkers. The ability to define individuals 
at high risk of developing cancer and the ability to noninvasively 
monitor disease burden during and after cancer treatment have 
substantial implications for clinical practice. GEM models have 
been employed to identify serum biomarkers for cancer using 
advanced proteomics methods. While these studies are still in their 
early phases of discovery, one serum biomarker has been identified 
for murine prostate cancer that correlated well with tumor weight 
and response to hormone therapy (74). In addition to serum bio-
markers, MRI has recently been evaluated for its ability to provide 
information regarding therapeutic efficacy in brain tumors. MRI 
of mice bearing brain tumors demonstrated that the tissue diffu-
sion values obtained early after standard chemotherapy correlated 

with tumor response (75). These results prompted an investigation 
of human brain tumors, which showed that tissue diffusion values 
obtained 3 weeks after the initiation of chemotherapy could pre-
dict patient response (76). Similar to serum biomarkers, the ability 
of MRI to define patients with recurrent disease or who do not 
respond to first-line therapy would allow for early intervention 
and the administration of alternative therapies.

Modifier genes. Unlike humans, GEM models can be generated 
on homogeneous genetic backgrounds, which greatly facilitate 
identifying modifier genes that influence the incidence or clini-
cal behavior of specific cancers. Numerous candidate genetic loci 
have been found that influence tumor number and size in mouse 
lung and colon cancer (77–79) as well as tumor type in mice 
harboring identical genetic mutations. For example, the tumor 
spectrum in mice harboring mutations in the p53 and Nf1 genes 
is dictated by the genetic background, which led to the identi-
fication of a locus on mouse chromosome 11 that determined 
susceptibility to astrocytoma (80). Last, genes that function to 
identify DNA polymerase errors during DNA replication (DNA 
mismatch repair genes) have been shown to modify colon cancer 
tumor burden and survival in GEM (81–83).

Performing preclinical studies in mice
Evaluating conventional cancer therapies in human patients. There 
are well-established paradigms for testing new drugs in human 
patients. New agents are typically evaluated in 3 phases. As the 
primary goal of a phase 1 trial is to determine the MTD of a drug, 
these studies typically involve administering a single agent to 
patients with a variety of different tumor types who have failed 
to respond to standard therapies. Phase 2 trials are designed to 
measure response rates in a group of patients with refractory or 
recurrent cancers treated at the MTD. Responses are tradition-
ally reported as “complete” (objective regression of all detectable 
lesions), “partial” (some regression), or “mixed” (regression of 
some lesions with growth of others). Compounds that show sig-
nificant promise in phase 2 studies are advanced to randomized 
phase 3 trials, in which the new drug is compared, either alone or 
in combination with other agents, to the “standard” treatment for 
a specific cancer. In contrast to phase 1 and phase 2 trials, phase 3 
studies include newly diagnosed patients and are frequently per-
formed in the setting of cooperative multi-institutional networks. 
Because phase 2 and phase 3 studies are logistically challenging, 
expensive, and time consuming, pharmaceutical and biotechnol-
ogy companies are understandably most interested in testing 
agents that might be approved to treat patients with common 
cancers. Importantly, phase 1 trials in patients with refractory 
cancers may not accurately mimic response rates in persons with 
de novo disease, and it has been difficult to test drug combina-
tions in phase 1 and phase 2 trials. GEM cancer models offer the 
possibility of overcoming these 2 problems.

Using GEM cancer models to investigate responsiveness and resistance 
to conventional anticancer agents. Relatively few studies of conven-
tional cytotoxic agents have been performed in GEM models. 
This is due, in part, to the fact that many investigators who gen-
erate GEM cancer models lack expertise in performing preclini-
cal studies. Although much less expensive than human clinical 
trials, investigating drugs in mice is challenging due to factors 
that include the need to generate and maintain cohorts of mice 
that spontaneously develop tumors, difficulties in assessing the 
responses of tumors that can only be visualized by small-animal 
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imaging (e.g., MRI), and the limited availability of laboratory sup-
port to measure PK/PD endpoints. Similarly, it is important to 
understand why some human tumors are inherently insensitive 
to chemotherapeutic agents, while other cancers initially respond 
but later become resistant when patients relapse. Pioneering stud-
ies in an Eµ-Myc B cell lymphoma model have shown that some of 
the genetic lesions that contribute to cancer, such as Tp53 inacti-
vation or deregulated Bcl2 expression, also modulate resistance to 
chemotherapeutic agents (84, 85).

Evaluating molecularly targeted inhibitors in humans and in GEM 
models. Some traditional strategies for evaluating new cancer ther-
apeutics are being reconsidered as more specific agents are devel-
oped (86). Target inhibition, rather than overt clinical toxicity 
(e.g., MTD), may represent a better endpoint for phase 1 testing of 
drugs with a well-defined biochemical target. Additionally, there 
are now many examples that underscore the importance of prese-
lecting patients with specific molecular abnormalities for target-
ed therapies trials. In this regard, the beneficial effects of ATRA 

are largely limited to APL; the efficacy of imatinib correlates with 
biochemical inhibition of specific mutant kinases (BCR-ABL, c-
kit, and PDGF); and the presence of activating EGFR mutations 
predicts clinical responsiveness to gefitinib in lung cancer (25, 
87–91). In a recent study, coexpression of a mutant EGFR recep-
tor and an intact PTEN gene correlated with the response of high-
grade malignant astrocytoma to EGFR inhibitors (92). Similarly, 
although RAS and BRAF mutations both encode proteins that 
deregulate MEK/ERK signaling in melanoma, cancer cell lines 
with BRAF mutations are highly sensitive to MEK inhibitors, 
whereas cells with RAS mutations are not (93).

Harnessing GEM cancer models to enhance the development of new 
therapies. Academic researchers, pharmaceutical companies, gov-
ernment agencies, and patient advocacy groups have all expressed 
concern about the apparent “disconnect” between our growing 
understanding of cancer biology and the relatively few instances 
in which these advances have been successfully translated into 
better cancer treatments. The authors recently participated in a 
meeting that examined how mouse models of tumors that develop 
in persons with NF1 and NF2 could be efficiently employed to 
inform human clinical trials (“Barriers and Solutions in the Use 
of Mouse Models to Develop Therapeutic Strategies for Neuro-
fibromatosis-Associated Tumors,” Banbury Center, Cold Spring 
Harbor Laboratories, November 3–5, 2005). Individuals with NF1 
are predisposed to the development of specific benign and malig-
nant tumors, including cutaneous and plexiform neurofibro-
mas, low-grade astrocytoma, juvenile myelomonocytic leukemia 
(JMML), and malignant peripheral nerve sheath tumor (MPNST), 
while persons with NF2 develop schwannoma, meningioma, and 
ependymoma (94). Because NF1- and NF2-associated tumors are 
relatively uncommon, pharmaceutical and biotechnology compa-
nies are not actively engaged in developing drugs for these specific 
indications. However, the molecular genetics of human NF1 and 
NF2 are understood in detail, and elegant mouse models of most 
NF-associated tumors are available. Many companies are develop-
ing drugs that interfere with components of the RAS signaling 
network, which might prove effective in some NF1-associated 
tumors. Unfortunately, performing clinical trials in NF1 patients 
is difficult for a variety of reasons, including the slow and predict-
able growth rates of many of these tumors, the propensity to affect 
children, and relatively small patient numbers. GEM models of 
JMML and MPNST are characterized by rapid growth and relative 
ease of measuring treatment responses (45, 46, 95, 96). These in 
vivo models, and tumor cells from these mice, could be used to 
rapidly screen candidate drugs for a beneficial therapeutic index, 
and promising agents might be investigated further by perform-
ing detailed PK/PD studies. By contrast, evaluating therapeutics in 
the existing neurofibroma and optic glioma GEM models is more 
difficult due to their relatively slow growth rates and requirement 
for small-animal imaging (43, 44). These models might be more 
useful for studies of preventive agents or for “front-line” preclini-
cal studies of compounds that target cells in the tumor microen-
vironment. The overall goal of this type of strategy (Figure 1) is to 
optimally employ the available GEM tumor models as “filters” to 
select agents for human trials that have the greatest likelihood of 
succeeding in the clinic. In this proposed strategy, new drugs could 
be rapidly screened for efficacy, target validation, and potential 
“off-target” effects in GEM models that lend themselves well to 
rapid throughput (e.g., Nf1 MPNST and leukemia GEM models). 
Drugs active in these paradigms would be further studied to define 

Figure 1
Use of GEM tumor models as “filters” to select agents for human clini-
cal trials. One strategy has been proposed for use in the Nf1 GEM 
models community, which involves the evaluation of new therapies in 
multiple mouse strains. New drugs would be rapidly screened using 
MPNST and leukemia GEM models for efficacy (therapeutic index), 
target validation, and potential “off-target” effects. These GEM models 
would be utilized for initial evaluation, based on the rapid growth of the 
tumors and the relative ease of measuring tumor growth. Drugs that 
exhibit activity in these models would be further analyzed in detailed 
PK/PD studies in other tumor models, such as orthotopic tumor explant 
models and transgenic mice harboring specific deregulated cancer-
associated molecules or pathways. Optic glioma and neurofibroma 
(plexiform neurofibroma) GEM models may be better suited for che-
moprevention studies as well as investigations of drugs that target 
specific cells in the tumor microenvironment (e.g., microglia and mast 
cells). Collectively, the combined use of each of the available robust 
preclinical GEM models would afford researchers the opportunity to 
comprehensively evaluate drugs prior to considering human clinical 
trials. Adapted with permission from a summary presentation by Susan 
Blaney, Cold Spring Harbor Laboratories, Banbury Center conference 
on “Barriers and Solutions in the Use of Mouse Models to Develop 
Therapeutic Strategies for Neurofibromatosis-Associated Tumors,” 
November 3–5, 2005.
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their bioavailability and pharmacokinetics in other GEM model 
systems (e.g., orthotopic transplant or transgenic mouse models). 
Secondary evaluation of candidate drugs would then entail the 
use of additional GEM strains (e.g., Nf1 optic glioma and neurofi-
broma GEM models) in which tumor microenvironment plays an 
important role in cancer formation. These latter GEM models are 
uniquely suited for chemoprevention studies as well as for examin-
ing drugs directed against specific cell types in the tumor microen-
vironment (e.g., immune system cells, endothelial cells). The com-
bined use of multiple complementary preclinical model systems 
provides an excellent opportunity to comprehensively evaluate 
lead compounds under conditions that closely approximate the 
human condition prior to the initiation of human clinical trials.

Given the pressing need to develop new cancer therapies, it is 
important to establish preclinical testing paradigms that provide 
the greatest opportunities to optimally translate results obtained 
in GEM cancer models into the clinic. We recommend that inves-
tigators take advantage of the multiple complementary GEM can-

cer models now available to evaluate new agents in order to best 
inform subsequent human clinical trials.
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