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Introduction
According to recent global statistics, breast cancer is now the most 
prevalent cancer worldwide, outranking lung cancer (1). Despite 
therapeutic advances in the last decades, metastatic breast can-
cer remains incurable. From an immunological standpoint, breast 
cancer tumors fall into two main categories (2). Hormone recep-
tor–positive breast cancer (HR+) is considered an immunologi-
cally “cold” cancer and has not benefited from recent advances 
in immunotherapy (3). In contrast, subsets of the triple-negative 
breast cancer (TNBC) subtype are immunologically “hot,” as evi-
denced by high levels of leukocytic infiltration and responsiveness 
to immune checkpoint blockade (ICB) (4, 5). In fact, following 
KEYNOTE-355, the addition of ICB to chemotherapy has become 
the new standard of care for TNBC tumors with high programmed 
death-ligand 1 (PD-L1) expression (6). High tumor mutation-
al burden (TMB) has previously been used as a biomarker for 
response to ICB in multiple cancers (7). However, it is only pres-
ent in 5% of breast cancer tumors and is not correlated with CD8+ 
T cell infiltration (7, 8). Therefore, the cause of the differential  

immunogenicity of HR+ and TNBC tumors remains elusive. As 
CD8+ T cells recognize MHC I–associated peptides (MAPs), we 
hypothesized that differences in the MAP repertoire of HR+ and 
TNBC tumors might explain this discrepancy.

In the present study, we focused on two broad groups of MAPs: 
tumor-specific antigens (TSAs) and overexpressed tumor-as-
sociated antigens (TAAs). TSAs are exclusively presented by 
tumor cells (9). Their absence in medullary thymic epithelial cells 
(mTECs) and extrathymic tissues means they cannot induce cen-
tral or peripheral immune tolerance (9). Initial studies aiming at 
identifying TSAs focused on mutated TSAs (mTSAs) originating 
from cancer-specific nonsynonymous mutations. A few mTSAs 
have been validated by mass spectrometry (MS) in melanoma 
tumors (10). However, most mTSA predictions based on exome 
sequencing and MHC-binding algorithms were not validated by 
MS analyses, suggesting that they are much rarer than initially 
conjectured (11–13). In addition, the vast majority of mTSAs are 
private antigens. Aberrantly expressed TSAs (aeTSAs) are unmu-
tated MAPs that arise from cancer-specific epigenetic changes and 
splicing aberrations (14). aeTSAs may originate from any genomic 
region (exons, introns, intergenic areas, etc.), and their key advan-
tage is that they are highly shared between tumors (12, 15). In acute 
myeloid leukemia and ovarian cancer, aeTSAs thus far identified 
originated primarily from introns and intergenic regions (12, 15).

Because TAAs are not cancer specific, the majority are less 
immunogenic than TSAs. Nonetheless, MS has validated the pres-
ence of TAAs, and a few TAAs were shown to elicit biologically 
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were presented by 53 different HLA alleles, with more than 20% 
presented by 2 common alleles: HLA-A*02:01 and HLA-B*18:01 
(Supplemental Figure 1B). Consistent with a previous report (27), 
62% of the transcriptome, defined as genes with more than 1 tran-
script per kilobase million (TPM), generated MAPs (Supplemental 
Figure 2A). A high proportion of source genes (72.5%, n = 7648) 
led to MAP generation in both HR+ and TNBC tumors (Figure 
1B), and most of them (92%, n = 9754) were also reported as MAP 
source genes in normal tissues from the HLA Ligand Atlas (21).

Of the 798 canonical MAPs not listed in the HLA Ligand Atlas, 
277 were found in HR+ and TNBC samples, 259 were unique to 
TNBC, and 262 to HR+ samples (Figure 1B). The 277 canonical 
MAPs shared by HR+ and TNBC samples were coded by a gene set 
enriched in extracellular matrix protein-coding genes (fold enrich-
ment 7.59, P < 0.05). The 259 canonical MAPs found only in TNBC 
samples showed enrichment in the glycosyltransferase protein 
class (fold enrichment 5.58, P < 0.05). No particular enrichment 
was found for the 262 MAPs found only in HR+ samples.

Source genes did not uniformly contribute to the immuno-
peptidome. While 49% of the source genes from our data set gen-
erated 5 or fewer MAPs, 51% generated more than 5 MAPs, and 
63 genes coded for more than 100 MAPs (Figure 1C and Supple-
mental Figure 2B). The top 1% of MAP generators were notably 
enriched in cytoskeletal and extracellular matrix protein classes 
(Figure 1D) and represented genes with higher expression than 
other immunopeptidome contributors (Figure 1E). Altogether, 
these results reveal a substantial overlap between the canonical 
immunopeptidomes of HR+ and TNBC samples and a conspicu-
ous enrichment in MAPs derived from cytoskeletal and extracellu-
lar matrix proteins. The immunopeptidome projects at the cell sur-
face a representation of proteins actively translated and degraded 
within the cells (28). Therefore, the overrepresentation of MAPs 
derived from cytoskeletal and extracellular matrix proteins is 
coherent with the crucial role of extracellular matrix remodeling 
in breast cancer tumorigenesis (29–31).

The contribution of EREs and smRNAs to the noncanonical breast 
cancer immunopeptidome. EREs and smRNAs are implicated in dif-
ferent steps in neoplastic transformation, including breast cancer 
(32, 33). Furthermore, EREs have already been shown to code for 
immunogenic MAPs in mice and humans (14, 34). Therefore, we 
specifically interrogated our personalized proteogenomic data-
bases for the presence of ERE- and smRNA-coded MAPs in breast 
cancer. ERE-coding transcripts were retrieved from bulk RNA-
Seq, whereas we used smRNA-Seq to build smRNA databases 
(Supplemental Figure 3, A and B).

We identified 75 ERE-derived MAPs, equally distributed 
between HR+ and TNBC samples (Figure 1F and Supplemental 
Table 3). ERE-derived MAPs mapped similarly to intronic and 
intergenic regions (Supplemental Figure 3C). The 3 main classes  
of EREs (e.g., long interspersed nuclear elements [LINE]; long 
terminal repeats [LTR]; short interspersed nuclear elements 
[SINE]) contributed similarly to the immunopeptidome of 
HR+ and TNBC samples (Supplemental Figure 3D). Only 9 of 
22 ERE families led to MAP generation; the L1 family was the 
most important contributor (Supplemental Figure 3E). ERE sub-
families that generated MAPs were expressed at a higher level 
than EREs generating no MAPs (Supplemental Figure 3F). We 

relevant antitumor responses in vivo (16–19). Features differenti-
ating immunogenic from nonimmunogenic TAAs are a matter of 
speculation. They may hinge on TAA abundance (at the peptide 
level) in various normal tissues, including mTECs (20, 21). The 
term cancer-testis antigen (CTA) is commonly but loosely used in 
cancer immunology. This is unfortunate because some CTAs are 
immunogenic in humans (16). The confusion stems from the fact 
that the initial list of CTAs (22) was assembled before the era of 
big multiomic data. Hence, MS analyses revealed the presence in 
normal tissues of many MAPs labeled as CTAs (21, 23). Therefore, 
we categorize CTAs as aeTSAs if they are not expressed in any nor-
mal tissue (including mTECs) aside from the testis and as TAAs if 
expressed in one or many normal tissues (9).

Ternette and colleagues have demonstrated the feasibility 
of performing immunopeptidomic analyses on a few primary 
TNBC tumors (24). They identified a few MAPs more abundant 
in tumors than in the normal adjacent tissue, but did not fully 
characterize these antigens. Unexpectedly, given the frequency 
of breast cancer, we are unaware of other MS analyses on prima-
ry human breast cancer. Hence, we performed comprehensive 
proteogenomic analyses of 26 primary breast cancers to address 
this unmet need. The approach we used has 2 critical features. 
First, it is based on MS analyses rather than on predictions. Sec-
ond, our approach is genome wide (rather than being limited 
to the exome). This feature is particularly relevant to the iden-
tification of TSAs. Our searches’ genome-wide scope enhances 
their breadth by allowing the identification of TSAs coded by any 
reading frame of all genomic regions.

Results
Global proteogenomic strategy for MAP identification in prima-
ry breast cancer samples. We analyzed 26 primary breast cancer 
samples (14 HR+ and 12 TNBC) from untreated patients. MAPs 
were identified by MS analyses using a previously described pro-
teogenomic approach (12, 14, 15). For each sample, we built per-
sonalized reference databases by in silico translation of RNA-Seq 
data. All MS databases included a canonical proteome (in-frame 
translation of protein-coding exons) used as is or combined with 
either (a) an endogenous retroelements (ERE) proteome, (b) 
a small RNA (smRNA) proteome, or (c) a cancer-specific pro-
teome. The cancer-specific proteome contained RNA-Seq reads 
present in the tumor sample, but not in a collection of mTECs 
(Supplemental Figure 1A; supplemental material available online 
with this article; https://doi.org/10.1172/JCI166740DS1). Con-
sistent with their critical role in the induction of central immune 
tolerance, mTECs express more genes than all other somatic 
cells (25). Therefore, the identification of cancer-specific MAPs 
deriving from sequences not expressed in mTECs is a pivotal fea-
ture of our approach, as it increases significantly the chances of 
identifying immunogenic targets (26).

Canonical immunopeptidomes of HR+ and TNBC tumors are 
similar. MAPs coded by the canonical reading frame of annotated 
protein-coding genes are collectively referred to as the canoni-
cal immunopeptidome. We identified a total of 57,094 canoni-
cal MAPs deriving from 10 552 protein-coding genes. The mean 
number of MAPs per tumor sample was 4,633, with no differences 
between HR+ and TNBC samples (t test, P > 0.05; Figure 1A). MAPs 
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times were highly correlated (Supplemental Figure 3H). Addition-
ally, we evaluated the distribution of spectral angles as calculated 
with Prosit (TMT 2021 HCD), a software capable of predicting sim-
ilarities between theoretical and observed spectra (Supplemental 
Figure 3, G and I). While the distribution for ERE-derived MAPs 
was similar to that for other MAPs (f test, P = 0.15), smRNA-de-
rived MAPs showed even higher mean spectral angle scores (0.90) 
compared with other MAPs (0.84, f test, P = 0.001). Hence, our 
stringent filtering and validation steps support our identification of 
noncanonical MAPs.

identified only 3 smRNA-derived MAPs (Supplemental Table 
3): 1 derived from a piwi-interacting RNA (piRNA) and 2 others 
from snRNAs. We conclude that, unlike smRNA-derived MAPs, 
ERE-derived MAPs are found in significant numbers in the 
immunopeptidome of breast cancer tumors.

In addition to our rigorous filtering steps (see Methods), we 
tested the correlation between predicted and observed retention 
times, a parameter considered a gold standard in the literature 
(35), to support our identifications’ validity. Both ERE- (r = 0.98, P 
< 0.001) and smRNA-derived (r = 0.98, P < 0.001) MAP retention 

Figure 1. Canonical immunopeptidomes of HR+ and TNBC tumors. (A) Number of unique MAPs 
identified per sample (n = 26). (B) Venn diagram of source genes of MAPs in HR+ tumors, TNBC 
tumors, and normal tissues from the HLA Ligand Atlas. (C) Total number of MAPs per source 
gene for the top 1% of MAP generators. (D) Enrichment analysis of PANTHER protein classes for 
the top 1% of MAP generators (n = 242). (E) Expression of gene nonsources of MAPs, sources of 
MAPs, and top 1% of MAP generators (tpm > 1, ANOVA; P < 0.001). (F) Number of ERE-derived 
MAPs identified in HR+ and TNBC samples.
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TSAs are more abundant in TNBC than HR+ breast cancers. Of 
the 24 aeTSAs, 17 were coded by canonical exons: 14 belonged to 
the MAGE family of CTAs, 2 to genes coding extracellular matrix 
components (COL11A1, ITH6), and 1 to a transmembrane pro-
tein-coding gene (ABCC11) (Figure 3 and Supplemental Table 5). 
Seven aeTSAs were derived from non–protein-coding regions, 2 
of which overlapped EREs and can be classified as ERE-derived 
MAPs (Figure 3, A and B, and Supplemental Table 5). Most of our 
aeTSAs were found in TNBC samples (Figure 2B). We sought to 
evaluate whether this enriched identification in TNBC samples 
correlated with TSA expression in the TCGA cohort. The pro-
portion of tumors expressing individual aeTSAs of the CTA class 
was superior in TNBC relative to HR+ tumors (19% versus 8%, P 
= 0.004) (Figure 3C). There was no significant difference in the 
distribution for the other categories of TSAs.

We next sought to evaluate whether aeTSA presentation would 
correlate with immune infiltration. An aeTSA was considered to 
be presented in a TCGA sample only when the MAP-coding tran-
script was expressed and the patient had an HLA allotype that could 
present this MAP (12). Next, we categorized breast cancer TCGA 
samples into 2 groups presenting high (above median) versus low 
(below median) numbers of aeTSAs. Then we performed a differ-
ential gene expression analysis between the 2 groups. A gene set 
enrichment analysis (GSEA) using gene markers of leukocytic infil-
tration described by Danaher et al. (39) showed enrichment of these 
genes in tumors with high TSA numbers (Figure 3D). This suggests 
that at least some TSAs are immunogenic in vivo. Additionally, we 
evaluated whether oncogenic pathways involved in immune escape 
(40) were enriched in samples with high or low levels of TSAs. To 
this end, we selected the corresponding hallmark gene sets from 
the Molecular Signature Database (41) and found enrichment in 
the PI3K pathway (normalized enrichment score = –1.48, P < 0.05; 
Supplemental Figure 4B) in tumors with low numbers of predicted 
TSAs. The PI3K pathway is implicated in tumorigenesis, progres-
sion, and resistance to treatment in breast cancers (42).

TAAs are highly shared in breast cancer. We identified 49 
TAAs, of which 48 originated from canonical protein-coding 
regions (Figure 4A and Supplemental Table 5). These antigens 
were highly shared in both HR+ and TNBC tumors (Figure 4B). 
The largest group of TAAs (n = 14) derived from genes reported 
as markers of cancer-associated fibroblasts (CAFs) (COL11A1, 
COL10A1, LRRC15) (43). These genes are implicated in extracel-
lular matrix production and cell migration. To assess their most 
likely cell of origin, we evaluated their expression level in a sin-
gle cell data set from Qian et al. (44) comprising 14 breast cancer 
tumors (Figure 5A). All 3 genes had significantly higher expres-
sion in tumor fibroblasts than in other cell subsets, including 
cancer cells (Figure 5B; ANOVA, P < 0.05). We identified 2 other 
large groups of TAAs. Thirteen TAAs were derived from CYP4Z1, 
which is implicated in many cancer types and elicits autoanti-
bodies in breast cancer patients (45). Eleven TAAs were associat-
ed with cell proliferation (Figure 4B); they were expressed at low 
levels in mature epithelial and blood cells, but at higher levels in 
bone marrow progenitor cells (Figure 4A).

Again, we predicted the number of TAAs per tumor in the 
TCGA data set using the same criteria as for aeTSA: expression of 
the MAP-coding sequence and presence of a relevant HLA allotype 

Identification of potential therapeutic targets: TAAs, aeTSAs, 
and mTSAs. We next took advantage of our large immunopep-
tidomic data set to discover putative therapeutic breast cancer 
targets (Supplemental Table 4). MAPs of interest (MOIs) were 
classified as TAAs, aeTSAs, or mTSAs with the workflow out-
lined in Figure 2A. Overall, we identified 25 TSAs: 1 mTSA and 
24 aeTSAs (Figure 2A). Identification of mTSAs is straightfor-
ward: they derive from mutated genomic sequences. The sole 
mTSA identified in our study originated from a rare nonsynon-
ymous mutation in the deubiquitinase OTUB1 gene not listed in 
the COSMIC database (36). The scarcity of mTSAs led us to ask 
whether genes frequently mutated in breast cancer were repre-
sented in the immunopeptidome. We found a slightly positive 
correlation between the frequency of mutations identified by The 
Cancer Genome Atlas (TCGA) consortium and the generation of 
MAPs in our data set (P < 0.001) (Supplemental Figure 4A). This 
means there was no negative bias against the representation of 
highly mutated genes in the breast cancer immunopeptidome. 
Hence, highly mutated genes generate MAPs, but these MAPs do 
not derive from the mutated region. This is consistent with the 
fact that MAPs preferentially originate from particular regions 
of MAP source proteins (MAP “hotspots”) (21, 27, 37). The most 
parsimonious explanation for the scarcity of mTSAs is that breast 
cancers harbor relatively few mutations and these mutations are 
not located in MAP hotspots.

Classification of unmutated MAPs as TAAs or aeTSAs is 
more complex and was based on comprehensive transcriptomic  
analyses of their expression in (a) breast cancer samples from 
TCGA (n = 1109), (b) 50 normal tissues from the Genotype-Tis-
sue Expression (GTEx) project (https://www.gtexportal.org/
home/) (5–150 samples per tissue), (c) mTECs (n = 11), and (d) 
purified blood and bone marrow samples (n = 4–16) (Figure 2A; 
see Methods, MOI expression in tissues). Blood and marrow cells 
are used as a surrogate for rapidly proliferating cells, since 90% 
of cells produced daily in humans are hematopoietic cells (38). It 
must be stressed that our expression profiling only considers the 
MAP-coding sequence, not the entire gene or genomic region. 
Since aberrations in RNA splicing commonly lead to the pres-
ence of protein isoforms only in cancer cells, MAPs derived from 
such cancer-specific isoforms are labeled as aeTSAs even if other 
isoforms are expressed in normal cells.

We considered only MAPs coded by transcripts overexpressed 
in at least 5% of TCGA breast cancer cohort samples. We assumed 
that antigens expressed in fewer samples had little therapeutic 
interest. MAPs whose expression was below 8.55 reads per hun-
dred million (rphm) in all normal tissues except the testis were 
labeled as aeTSAs. As reported (12), we used 8.55 rphm as a 
threshold because expression below this level is associated with a 
very low probability of MAP generation in normal tissues. Notably, 
none of our aeTSAs are listed in the HLA Ligand Atlas of normal 
tissues and organs (21). Otherwise, MOIs with above threshold 
expression in one or more normal tissues were labeled as TAAs 
if overexpressed in neoplastic or highly proliferative tissues com-
pared with normal nonhematopoietic tissues. This strategy led to 
the identification of 24 aeTSAs and 49 TAAs, most of which were 
not listed in the Immune Epitope Database (IEDB) (Figure 2, B 
and C, and Supplemental Table 5).
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of TCR clonotypes recognizing our TAAs and TSAs is relevant, 
since the number of neoantigen-specific TCR clonotypes cor-
relates with antitumor responses in patients treated with anti-
PD1 (46). Moreover, the significant expansion of TAA- and 
TSA-responsive T cells (5-fold to 1,747-fold) is notable because 
T cells’ proliferative capacity is the first effector function lost 
when they become exhausted or anergic (47). We conclude that 
healthy subjects’ repertoire contains polyclonal and functional 
TAA- and TSA-specific T cells.

Presentation of numerous TSAs improves overall survival in 
TNBC. We next sought to evaluate whether the number of pre-
sented TAAs and aeTSAs correlated with the overall survival of 
TCGA patients. We considered that an antigen was presented in 
a tumor when both the MAP-coding transcript and an appropri-
ate HLA allotype were expressed (12). Patients were divided into 2 
categories: high number of presented antigens (> median) and low 
number of presented antigens (≤ median).

The number of presented TAAs had no impact on the sur-
vival of patients with HR+ or TNBC tumors (Figure 7, A and 
B). Likewise, the number of presented aeTSAs had no effect 
in patients with HR+ tumors (Figure 7C), a group that express-
es few aeTSAs (Figure 3C). However, the presentation of more 
numerous aeTSAs correlated with better overall survival in the 
TNBC cohort (Figure 7D). This benefit was observed with aeT-
SAs deriving from both MAGE genes and noncoding regions 
(Figure 7, E and F). Notably, this survival advantage was not reit-
erated when we considered only TSA expression (and not the 
HLA allotypes) (Figure 7, E and F). This means that the favorable 
impact of aeTSA presentation is HLA restricted. Hence, it is due 

(Figure 4C and Supplemental Figure 4C). HR+ and TNBC tumors 
with a high level of predicted TAAs showed enrichment in immune 
activation and immunosuppressive pathways, namely the PI3K/
mTOR, Wnt/B-catenin, and MAPK pathways. In addition, tumors 
with numerous TAAs showed enrichment in markers of fibroblast 
proliferation. These findings suggest that in the presence of multiple 
TAAs, antitumor immune responses are mitigated by the activation 
of immunosuppressive pathways and the accumulation of CAFs.

Immunogenicity of TSAs and TAAs. In order to evaluate the 
immunogenic potential of identified antigens, we performed func-
tional expansion of specific T cell (FEST) assays, which involve 
TCR Vβ CDR3 sequencing of CD8+ T cells stimulated or not with 
individual synthetic peptides (see Methods). FEST assays estimate 
2 features of antigen-specific T cells: their proliferative capacity 
and the diversity of their TCR repertoire. Therefore, we reasoned 
that FEST assays were particularly suitable to evaluate the func-
tionality of TAA- and aeTSA-specific T cells. We tested 11 different 
antigens (7 TSAs and 4 TAAs) presented by HLA allotypes found 
in 2 healthy blood donors (Figure 6). Positive controls comprised 
the immunogenic modified MelanA-derived MAP ELAGIGILTV 
and respiratory syncytial virus RSV-NL9 peptide NPKASLLSL.

Significative expansion of TCR Vβ clonotypes (from 3 to 39 
clonotypes) was detected following priming with each of the 7 
TSAs. These TSAs were derived from genes of the MAGEA family 
(n = 5), COL11A1 (n = 1), and an intergenic region overlapping an 
ERE (n = 1) (Figure 6). Three of the 4 tested TAAs led to a signif-
icative expansion of 2 to 37 clonotypes. Two immunogenic TAAs 
were derived from LRRC15 and COL11A1 (2 genes expressed 
in CAFs), and 1 was derived from PRAME. The polyclonality  

Figure 2. Identification of tumor antigens of interest. (A) Classification 
workflow for MOI. (B) Number of TSAs and TAAs identified in HR+ sam-
ples, TNBC samples, or both. (C) Proportion of TSAs and TAAs previously 
reported in the IEDB.
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to the MHC I presentation of the aeTSA peptide and not to the 
expression of the aeTSA-coding transcripts per se.

We conclude that aeTSAs reported herein confer an MHC 
I–restricted survival advantage in patients with TNBC (Figure 
7D). This is not the case in patients with HR+ tumors (Figure 7C), 
probably because they present fewer aeTSAs than TNBC tumors 
(Figure 3C). Presentation of TAAs does not confer a similar sur-
vival advantage, likely because TAA expression is linked to acti-
vation of immunosuppressive pathways (Figure 4C).

Discussion
The immunopeptidomes of TNBC and HR+ breast cancers dis-
play conspicuous similarities: source genes are highly overlap-
ping, mTSAs are exceedingly rare, and TAAs are common in 
both. There is, however, one clear immunopeptidomic difference 
between TNBC and HR+ breast cancers: aeTSAs are frequently 
found in TNBCs, but rarely in HR+ tumors. Discrepancies in the 
number of aeTSAs provide a plausible molecular rationale for 
the prominent immunoreactivity of TNBC relative to HR+ breast 

Figure 3. Identification of TSAs. (A) Expression heatmap of aeTSAs’ coding sequence in normal tissues (GTEx, mTECs, and bone marrow). Number of sam-
ples per tissue are shown in parentheses. Color intensity corresponds to average expression per tissue (mean log-transformed rphm). Bold boxes indicate 
that more than 10% of samples have an expression above 8.55 rphm. TSAs with an asterisk are also categorized as ERE-derived MAPs. ECM, extracellular 
matrix; MT, membrane transporter (ABCC11). (B) Genomic origin of identified TSAs. (C) Percentage of HR+ (n = 583) and TNBC (n = 158) tumors from TCGA-
BRCA cohort with individual aeTSA expression of more than 2 rphm. (D) Enrichment analysis of tumor-infiltrating leucocyte gene markers in tumors with 
high levels (> median) of predicted aeTSAs (39). Normalized enrichment score = 1.59; adjusted P < 0.01.
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cancers. Notably, TNBCs presenting numerous aeTSAs are asso-
ciated with superior overall survival. Since this advantage is MHC 
I restricted, we can assume it depends on CD8+ T cells. More-
over, the number of presented aeTSAs also positively correlated 
with survival in acute myeloid leukemia (12). As aeTSAs show in 
vitro immunogenicity, they represent attractive targets for anti-
gen-specific immunotherapies based on vaccines, TCR-contain-
ing biologics, and cell therapy. In contrast, the scarcity of mTSAs 
identified in our data highlights their low relevance as therapeutic 

tools in breast cancer. Indeed, although highly mutated genes did 
generate MAPs, they did not lead to mTSA generation. Two non-
mutually exclusive hypotheses explain this: mutated regions are 
not located in MAP hotspots or are eliminated via immunoediting 
during tumor evolution (27, 48).

Our samples came exclusively from untreated patients. This 
study clearly shows that HR+ tumors from untreated patients rare-
ly express aeTSAs. However, (a) expression of aeTSAs (e.g., from 
the MAGE family) can be enhanced by hypomethylating agents, 

Figure 4. Identification of TAAs. (A) Expression heatmap of TAAs’ coding sequence in normal tissues (GTEx, mTECs, and bone marrow). Number of 
samples per tissue are shown in parentheses. Color intensity corresponds to average expression per tissue (mean log-transformed rphm). Bold box-
es indicate that more than 10% of samples have an expression above 8.55 rphm. CM, cell migration; TF, transcription factor. (B) Percentage of HR+ 
(n = 583) and TNBC (n = 158) tumors from TCGA-BRCA cohort with individual TAA expression greater than 2 rphm. (C) GSEA in HR+ breast cancer 
tumors from the TCGA cohort with high levels (>median) of predicted TAAs.
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targeting of TAAs. Of relevance, PI3K inhibitors are approved for 
treating HR+ breast cancer and were shown to enhance effector 
CD8+ T cell activity in mouse breast cancer models (51).

One class of TAA may be particularly attractive for immune 
targeting: the 14 TAAs derived from CAFs. By creating extra-
cellular matrix components, fibroblasts contribute to tumor 
growth and immune evasion (52). Therefore, strategies aiming 
at the depletion of CAFs or extracellular matrix components 
are actively investigated. However, antibody-based approach-
es have been fraught with several difficulties (53) and have not 
yet led to clinically meaningful responses in humans. Targeting 

and (b) one family of hypomethylating drugs (CDK4/6 inhibitors) 
is currently used as the first line of treatment in HR+ breast cancer. 
Hence, further studies are warranted to explore aeTSA expression 
in HR+ tumors treated with hypomethylating agents.

Both TNBC and HR+ tumors express numerous highly shared 
TAAs. Although most tested TAAs showed in vitro immunogenic-
ity, they do not seem to elicit spontaneous antitumor responses, 
perhaps because their expression coincides with the proliferation 
of CAFs and activation of pathways instrumental in immune eva-
sion (PI3K, WNT, MAPK) (49, 50). We propose that currently avail-
able inhibitors of these pathways could synergize with immune 

Figure 5. CAF-derived TAAs. (A) t-Distributed stochastic neighbor embedding (t-SNE) showing that COL11A1, COL10A1, and LRRC15 are mainly expressed 
in fibroblasts in 14 primary breast cancer samples from Qian et al. (44). (B) COL11A1, COL10A1, and LRRC15 are overexpressed in fibroblasts compared with 
other cell types found in breast cancer samples (ANOVA; P < 0.05).
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Figure 6. In vitro immunogenicity of TSAs and TAAs. 
FEST assays were conducted after 20 days of stimu-
lation with autologous T cell–depleted PBMCs pulsed 
with individual peptides. (A and B) Frequency of specific 
clonotype expansion in donors 26 and 27. The number 
of significantly expanded clonotypes is indicated above 
each peptide. Source genes are indicated below the pep-
tide sequences of TAAs and TSAs. (C and D) Expansion 
of antigen-responsive T cell clonotypes compared with 
unpulsed CD8+ T cells in donors 26 and 27.
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regions (12, 15), exons are their primary source in breast cancer. 
We should, therefore, be cautious in extrapolating immunopeptid-
omic concepts from one tumor type to another.

Methods
Primary breast cancer samples. Fresh frozen primary breast tumor 
samples were bought from Tissue Solutions. Samples had a histolog-
ical diagnosis of invasive ductal carcinoma (n = 24) or invasive car-
cinoma (n = 2). Immunohistochemistry data were available through 
Tissue Solutions, and samples were categorized as HR+ (ER or PR 
positive and HER2 negative; n = 14) or TNBC (ER/PR/HER2 nega-
tive; n = 12). Patients did not receive chemotherapy before resection 
(Supplemental Table 1).

CAF antigens with T cells might represent an effective strategy 
for depleting these tumor cell allies.

As a final comment, we wish to emphasize that there are com-
monalities and differences in the biogenesis of the immunopep-
tidome in different cancer types. Changes in methylation are a 
recurring theme (12, 15) and probably explain the expression of 
aeTSAs of the MAGE family in the present study. However, the 
cancer immunopeptidome also reflects key events specific to dif-
ferent cancer types: amplification of chromosome 3 in ovarian 
cancer (15), intron retention in acute myeloid leukemia (12), and 
extracellular matrix production in breast cancer (this study). Like-
wise, while most of the actionable antigens found in ovarian cancer 
and acute myeloid leukemia originate from non–protein-coding  

Figure 7. aeTSAs predicted presentation confers a survival advantage to patients with TNBC tumors. For each tumor, antigens were considered presented 
(presTSAs or presTAAs) if their coding sequence and an adequate HLA allele for the presentation were expressed. High groups (red) correspond to patients 
with the highest numbers of presTSAs or presTAAs (median). Low groups (turquoise) correspond to patients with lower numbers of presTSAs or presTAAs 
(median). (A and B) Survival analysis of predTAAs in HR+ and TNBC tumors. (C and D) Survival analysis of predTSAs in HR+ and TNBC tumors. (E and F) 
Survival analysis of predTSAs originating from noncoding regions or MAGE genes in TNBC tumors. To distinguish the impact of expression as opposed to the 
presentation of aeTSAs, an additional curve was computed with expressed antigens that lacked an appropriate HLA allele for presentation (exprTSAs).
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PEAKS scores to ensure a FDR of 1%, calculated as the ratio between 
the number of decoy hits and the number of target hits above the 
score threshold. PEAKS scores corresponding to a 1% FDR for each 
sample were determined, and peptides that passed the threshold 
were further filtered to match the following criteria: peptide length 
between 8 and 11 amino acids and rank eluted ligand threshold of less 
than 2% based on NetMHCpan-4.1b (58). These filtering steps were 
performed with the use of MAPDP (59).

Genomic origin and validation of MOIs. The tumor antigen can-
didates were identified as previously described (12, 14, 15). When 
a MAP aligned to an exonic sequence with a 1 or greater read, the 
genomic origin of the MAP was considered exonic. Otherwise, the 
alignment with the highest number of reads was used to confer the 
genomic origin of the MOI. All final alignments for TSAs and TAAs 
were manually validated with Integrative Genomics Viewer (IGV) 
(https://igv.org/doc/desktop/). MOIs for which reads did not match a 
concordant genomic location or matched hypervariable regions (such 
as the MHC, Ig, or TCR genes) were excluded.

TSA candidates were classified as mTSAs if they contained vari-
ants in their MAP-coding sequences that did not match known ger-
mline polymorphisms reported in the Database of Single-Nucleotide 
Polymorphisms (dbSNP), version 149 (60).

Leucine and isoleucine variants are not distinguishable by stan-
dard MS approaches. Hence, we discarded MAPs for which an exist-
ing variant was flagged as non-MOI unless it presented a higher RNA 
expression than the variant or mapped in inadequate regions (in the 
case of ERE MAP candidates and smRNA MAP candidates). Addition-
ally, all MOI, ERE MAP, and smRNA MAP candidates were validat-
ed with COMET software (2020.01 rev.4) (61) using the filters used 
with Peaks and an FDR of 5%. Manual spectra validation was done 
in-house for peptides not reidentified with COMET to further keep or 
discard MAPs. All possible gene IDs for MAP-deriving proteins report-
ed in the HLA Ligand Atlas were obtained with BioMart (62).

MOI expression in tissues. As previously described by Ehx et al. 
(12), the expression of the MOI coding sequence was evaluated in 
normal tissues from (a) GTEx (50 normal tissues, 5–150 samples 
per tissue), (b) mTECs (n = 11), (c) purified blood and bone marrow 
samples (n = 4–16), and (d) breast cancer tissues from TCGA (n = 
1,109) (Supplemental Table 2).

Predicted TAA and TSA presentation in TCGA breast cancer samples 
and survival analyses. A TAA or TSA was considered to be presented 
in a TCGA sample only when the MAP-coding transcript was high-
ly expressed (>2 rphm and >nonnull median) and the patient had 
an HLA allotype that could present this MAP according to NetMH-
CPan4.1 (58). HLA alleles for TCGA patients were determined with 
Optitype software (v.1.3.5) (63). TCGA survival data were obtained 
with the TCGAbiolinks package (64). Patients with more than 1 biopsy 
were removed from the analyses so as not to duplicate their contribu-
tion to the results, leaving 915 patients. Kaplan-Meier survival curves 
and log-rank tests were generated with the TCGAbiolinks package.

Single-cell analysis. Aligned single-cell reads from 14 breast can-
cer patients published by Qian et al. (44) were obtained through their 
website (http://scope.lambrechtslab.org/). Visualization graphs were 
developed with the Seurat package (65).

In silico immunogenicity prediction. Immunogenicity predictions 
of MOI were performed with Repitope (66). Feature computation was 
performed with the predefined MHCI_Human_MinimumFeatureSet 

RNA and smRNA-Seq. Total RNA was isolated using the All Prep 
DNA/RNA/miRNA Universal kit (QIAGEN) according to the manu-
facturer’s instructions. RNA was quantified using Qubit (Thermo Sci-
entific), and quality was assessed with the 2100 Bioanalyzer (Agilent 
Technologies). Transcriptome libraries were generated using KAPA 
RNA HyperPrep (Roche) using a poly-A selection (Thermo Scientific). 
smRNA libraries were prepared using the QIAseq miRNA Library Kit 
(QIAGEN). Sequencing was performed on the Illumina NextSeq500 
system (Supplemental Table 1).

Database generation. All RNA-Seq reads were trimmed by Trim-
momatic, version 0.35, and aligned with STAR, version 2.5.1b, to the 
GRCh38 human genome using annotations from Ensembl release 99. 
Transcript expression was quantified in transcript per million (TPM) 
using Kallisto, version 0.43.0, with default parameters.

Canonical proteomes. Canonical proteomes were built as pre-
viously described (14). Sample-specific exomes were built using 
pyGeno (54) by inserting single-base variants (quality > 20) iden-
tified with FreeBayes (55). Annotated open-reading frames with 
TPM of greater than 0 were translated in silico from sample-specific 
exomes, creating the canonical proteome.

ERE proteomes. ERE proteomes were built for individual samples 
as described (34). Ambiguous nucleotides were trimmed from reads 
of the ERE data set, followed by a translation in all possible read-
ing frames. Finally, the resulting ERE amino acid sequences were 
spliced to remove sequences following stop codons. Only sequences 
of at least 8 amino acids were kept and given a unique ID to generate 
a theoretical ERE proteome. This database was then concatenated to 
the canonical proteome, generating the personalized ERE proteome 
used for MAP identification.

smRNA proteomes. smRNA-Seq reads were concatenated in fastq.gz 
files. K-mer databases (24 long) were generated with Jellyfish, version 
2.2.3, and assembled into contigs as previously described (12). Then we 
3-frame translated the contigs and aggregated the various polypeptides 
into synthetic sequences of approximately 10k aa using the sequence JJ 
as a linker between the polypeptides. This manipulation was performed 
to avoid a bias in PEAKS linked to the use of a large number of shorter 
sequences. The obtained multi-fasta was concatenated with each sam-
ple’s canonical proteome for MAP identification.

Cancer-specific proteomes. Cancer-specific proteomes were 
assembled using k-mer profiling as described (12, 14). k-mers (33 
nucleotides long) present at least twice in the mTECs k-mer database 
were removed from each cancer sample database, and the remaining 
k-mers were assembled into contigs. Finally, we 3-frame translated 
the contigs and linked the different polypeptides with JJ linkers. This 
database was concatenated with each sample’s canonical proteome 
for MAP identification.

MS analyses. MHC I immunoprecipitation, TMT labeling, and liq-
uid chromatography-MS/MS analyses (LC-MS/MS) were performed 
as described (56). Of note, TMT labeling was used to improve the 
identification of peptides and was not used for quantification purpos-
es (57). LC-MS/MS data were searched against the relevant database 
using PEAKS 10.5 or Peaks X Pro (Bioinformatics Solution Inc.). For 
peptide identification, tolerance was set at 10 ppm and 0.01 Da for 
precursor and fragment ions, respectively. Oxidation (M), deami-
dation, and TMT modification were set as variable modifications. 
Following peptide identification, we used the modified target-decoy 
approach built-in PEAKS to apply a sample-specific threshold on the 
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Statistics. Analyses and figures were performed using R, ver-
sion 4.0.0. The gplots and ggplot2 packages in R were used to gen-
erate the different graphs. Tests involving comparisons of distribu-
tions were performed with the t test or the 1-way ANOVA test, as 
necessary. Differential gene expression analyses were performed 
with the limma package (69). GSEAs were performed with the fgsea 
package (68). Kaplan-Meier survival curves and log-rank tests were 
generated with the TCGAbiolinks package. Significant P values are 
indicated in each legend.

Study approval. This project was approved by the Clinical Research 
Ethics Committee from the University of Montreal (CERC-20-012-D).
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FEST assays. FEST assays were conducted as described (67), with 
minor modifications. Briefly, on day 0, thawed peripheral blood mono-
nuclear cell (PBMCs) from healthy donors (BioIVT) were T cell enriched 
using the Human Pan T Cell Isolation Kit (Miltenyi Biotec). Five million 
T cells were cocultured during 20 days, with a restimulation at day 10, 
with autologous T cell–depleted PBMCs pulsed with individual peptides. 
After in vitro expansion, CD8+ T cells were isolated using the Human 
CD8+ T Cell Isolation Kit (Miltenyi Biotec). DNA extraction was per-
formed with a QIAGEN DNA Blood Mini Kit and was followed by TCR 
Vβ CDR3 sequencing using the ImmunoSEQ platform. Raw data were 
processed with the FEST web tool (www.stat-apps.onc.jhmi.edu/FEST). 
The following parameters were used: FDR 1%, fold change >5, minimal 
number of templates of 1, and “Ignore baseline threshold.” Our 2 nega-
tive control groups consisted of CD8+ T cells cocultured with unpulsed 
autologous T cell–depleted PBMCs and uncultured CD8+ T cells.

GSEA. GSEAs were performed with the fgsea package (68). These 
analyses were performed using RNA-Seq data from TCGA. First, we 
divided samples presenting high (above median) versus low (below 
median) numbers of aeTSAs or TAAs. TAAs or aeTSAs were consid-
ered to be presented in a TCGA sample when their MAP-coding tran-
scripts were expressed (> rphm) and the patient had an HLA allotype 
that could present this MAP according to NetMHCPan4.1 (58). Then 
we performed a differential gene expression analysis between the 
high and low groups. These analyses were performed on all TCGA 
samples or separately in HR+ and TNBC samples, as indicated in the 
main text. Using known lists from Danaher et al. (39) and the Molec-
ular Signature Database, we could describe different enrichments 
presented in Figure 3D, Figure 4C, and Supplemental Figure 4, B and 
C. For GSEAs, TAAs or TSAs were considered to be presented in a 
TCGA sample when their MAP-coding transcripts were expressed (>2 
rphm) and the patient had an HLA allotype that could present this 
MAP according to NetMHCPan4.1.

Data and materials availability. MS raw data and PEAKS searches 
were deposited to the ProteomeXchange Consortium via the PRIDE 
partner repository with the following data set identifiers: PXD034818. 
RNA-Seq data were deposited in the NCBI’s Sequence Read Archive 
(SRA) (PRJNA852282) and Gene Expression Omnibus database (GEO 
GSE206838) (Supplemental Table 1). Values for all data points in 
graphs are reported in the Supporting Data Values file.
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