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Introduction
Analysis of plasma DNA somatic point mutations or copy num-
ber alterations through liquid biopsy has potential utility for 
informing treatment decisions in cancer patients with a range of 
tumor types (1, 2). Several studies have shown that plasma DNA 
is representative of clinically relevant metastases (3). In addition 
to genomic information, plasma DNA also contains methylation 
information that could be concurrently extracted. Methylation 
status is tissue-specific and can be used to interrogate cellular 

components and quantitate tumor composition in tissues (4, 5). 
Several studies to date have used methylation information from 
plasma DNA for early detection of cancer and to identify cancer 
tissue of origin (6–14), but the plasma DNA methylome has not 
been as extensively characterized in metastatic cancer patients. 
Methylation markers identified from cell lines or tissues can be 
used for tracking prostate cancer in plasma but may miss differ-
ences that occur as a result of plasma DNA composition, which 
could be important due to the complexity of tissue-specific 
methylation patterns (15).

Metastatic castration-resistant prostate cancer (mCRPC) 
exhibits a variable clinical course and biomarkers to stratify patients  
are urgently required to optimize management. mCRPC patients 
with a range of genomic aberrations, including androgen recep-
tor (AR) gene copy number gain or TP53 mutations, detected in 
plasma prior to androgen receptor (AR) targeting with abiraterone 
or enzalutamide have a shorter duration of treatment benefit and 
overall survival (16–20). Recent integration of genomics, methyl-
ation, and expression from tumor biopsies has identified methyla-
tion changes as a key component in the transition of mCRPC to a 
more aggressive, androgen-insensitive phenotype (21). However, 
tumor biopsies from metastatic sites can be difficult to obtain and 
repeated sampling of multiple metastases is usually not feasible, 

Tumor DNA circulates in the plasma of cancer patients admixed with DNA from noncancerous cells. The genomic landscape of 
plasma DNA has been characterized in metastatic castration-resistant prostate cancer (mCRPC) but the plasma methylome 
has not been extensively explored. Here, we performed next-generation sequencing (NGS) on plasma DNA with and without 
bisulfite treatment from mCRPC patients receiving either abiraterone or enzalutamide in the pre- or post-chemotherapy 
setting. Principal component analysis on the mCRPC plasma methylome indicated that the main contributor to methylation 
variance (principal component one, or PC1) was strongly correlated with genomically determined tumor fraction (r = –0.96; 
P < 10–8) and characterized by hypermethylation of targets of the polycomb repressor complex 2 components. Further 
deconvolution of the PC1 top-correlated segments revealed that these segments are comprised of methylation patterns 
specific to either prostate cancer or prostate normal epithelium. To extract information specific to an individual’s cancer, we 
then focused on an orthogonal methylation signature, which revealed enrichment for androgen receptor binding sequences 
and hypomethylation of these segments associated with AR copy number gain. Individuals harboring this methylation 
pattern had a more aggressive clinical course. Plasma methylome analysis can accurately quantitate tumor fraction and 
identify distinct biologically relevant mCRPC phenotypes.
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ylation and genomic data extracted concurrently from metastat-
ic cancer patient plasma DNA using next-generation sequencing 
(NGS) could improve patient stratification by identifying clinically 
relevant subtypes. We aimed to profile mCRPC methylation fea-
tures and interrogate clinical utility in plasma from patients treat-
ed with standard-of-care abiraterone or enzalutamide.

limitations that could be addressed by minimally invasive liquid 
biopsy. To concurrently study the plasma genome and methylome 
and overcome the inherent challenges of methylation analysis 
resulting from the high variance in methylation data, we selected 
plasma samples from a focused cohort of mCRPC patients with 
genomic information. We hypothesized that integration of meth-

Figure 1. The mCRPC plasma methylome. (A) Schematic overview of the workflow for integrating NGS of the plasma methylome and genome. (B) Genom-
ically determined tumor fraction in baseline and progression samples from pre- and post-chemotherapy patients receiving abiraterone or enzalutamide. 
(C) Methylation ratio density (upper panel) and quantile-quantile plot (Q-Q plot, bottom panel) analysis based on the genomic annotation of methylation 
segments in promoter or other regions. Data from white blood cells (WBC) or plasma collected at baseline (BL) or progression (PD) from mCRPC patients or 
from healthy volunteers (HV) are presented separately. (D) Schematic workflow of methylation data analysis.
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regions were –20.3, –20.7, and –13.1 and for nonpromoter regions 
were –154.3, 167.9, and –6.0; all P < 10–9, Dunn’s test; Figure 1C). In 
keeping with previous studies that the cancer genome is character-
ized by more hypomethylation events (25–27), the mCRPC plasma 
methylome that includes a mixture of cancer and normal DNA is 
globally more hypomethylated than healthy volunteer plasma.

An unbiased approach identifies tumor fraction as the major 
determinant of global plasma DNA methylation variance. We used 
an unbiased analytical framework to explore the complexity of 
pan-genome plasma methylation changes (Figure 1D). We per-
formed principal component analysis (PCA) on the 19 baseline 
samples. The first principal component (PC1) contributed 42% 
of the variance (Figure 2A) and showed a high correlation with 
genomically determined tumor fraction (r = –0.96, P = 1.3 × 10–10, 
Pearson correlation; Figure 2B). To investigate whether treatment 
with AR targeting agents affected the association of PC1 with 
tumor fraction, we used PCA eigenvectors to project the progres-
sion samples, healthy volunteer controls (0 tumor fraction), and 
the LNCaP prostate cancer cell line (100% tumor, 3 replicates; 
Figure 2C). After including the projected samples, the correlation 
of PC1 and genomically determined tumor fraction remained high 
(r = –0.94, P = 1.3 × 10–18; Figure 2C).

To evaluate the clinical applicability of our findings, we then 
extracted scaled PC1 values from LP-WGBS. Applying Bland-Al-
tman analysis, we found a good agreement between LP-WGBS–
derived tumor fraction estimation and estimates from high-cov-
erage targeted NGS (95% limits of agreement: –0.25–0.15, bias: 
–0.05), introducing the opportunity for scalable and cost-effi-
cient circulating tumor DNA detection and quantitation using 
LP-WGBS (Supplemental Figure 4).

Methylation ratio can serve as a proxy for tumor fraction. To test 
features identified by NGS in data sets with fewer data points, 
such as methylation arrays, we hypothesized that the median of 
methylation ratios of segments that most strongly correlated to 
the component features could serve as a proxy of tumor fraction. 
We consistently observed a high correlation (r = 0.93, Pearson 
correlation) of median methylation ratio with genomically deter-
mined tumor fraction in both negatively and positively correlated 
group when including 10 to 10,000 segments. Also, the intrasam-
ple variance of methylation ratios in the top-correlated segments 
gradually increased when we included more segments (Supple-
mental Figures 5 and 6). We therefore selected the 1000 segments 
that showed the highest correlation with PC1 (hereafter referred 
to as circulating tumor methylation signature or ct-MethSig; Fig-
ure 3A). We confirmed that the median of ct-MethSig methyla-
tion ratios showed a high correlation with tumor fraction (520 
segments in negatively correlated regions or ct-MethSig, hyper-
methylated group: r = 0.95, P = 8.4 × 10–19; 480 segments in posi-
tively correlated regions or ct-MethSig, hypomethylated group: r = 
–0.93, P = 3 × 10–16, Pearson correlation; Figure 3B). Additionally, 
ct-MethSig did not include genes whose methylation status has 
been previously reported as diagnostic of prostate cancer in tissue 
(28), as the segments overlapping with these genes were not as 
strongly correlated with PC1 value (Supplemental Figure 7).

Additionally, we tested this finding in published tissue data 
sets and confirmed a high correlation with tumor purity both 
in mCRPC (21) (hypermethylated group: r = 0.92, P < 1.5 × 10–6; 

Results
Interrogating the plasma DNA methylome in metastatic prostate 
cancer. We concurrently characterized the mCRPC plasma meth-
ylome and genome (Figure 1A). Plasma DNA was subjected to 
either high-coverage targeted or whole-genome NGS in order to 
determine tumor fractions and copy number status. Tumor frac-
tions were derived using genomic information at heterozygous 
single-nucleotide polymorphisms (SNPs) to computationally 
determine the abundance of deletions involving 8p21 or 21q22, 
designated as prostate cancer anchor lesions that we had used 
previously as a proxy for tumor fraction (22, 23). We collected 
plasma within 30 days of abiraterone or enzalutamide (baseline) 
administration from 25 mCRPC patients (median age: 76 years; 
range: 42–90 years) representing a wide range of genomically 
determined tumor fractions and from across the disease spectrum 
(docetaxel-naive or docetaxel-treated) who were participating in 
prospective biomarker protocols. Of the 25 patients, 19 also had 
plasma collected at radiographic progression (Figure 1B and Sup-
plemental Table 1; supplemental material available online with 
this article; https://doi.org/10.1172/JCI130887DS1). The medi-
an and range of genomically determined tumor fractions in our 
mCRPC cohort were 0.41 (0.04–0.89) and 0.42 (0.09–0.89) for 
baseline and progression plasma, respectively.

We subjected a separate aliquot of DNA to bisulfite treatment 
and performed target enrichment NGS for 5.5 million pan-genome 
CpG sites (target coverage: at least ×30; key sequencing parame-
ters in Supplemental Table 2). These CpGs were selected based on 
their known involvement in or proximity to regions that had been 
associated with cancer (see Supplemental Methods). In total, we 
performed targeted capture on 39 plasma samples (19 baseline, 16 
progression, 4 plasma samples from 2 healthy male individuals, 
ages 30 and 60 years, Supplemental Figure 1 and Supplemental 
Table 2). We also performed low-pass whole-genome bisulfite 
sequencing (LP-WGBS) on 46 plasma samples (Supplemental 
Figure 1 and Supplemental Table 3). Additionally, we conducted 
targeted bisulfite NGS on 15 white blood cell samples, including 
white blood cells collected prior to and 108 days after treatment 
with abiraterone from one patient (Supplemental Table 1).

Adjacent CpG methylation patterns are usually highly cor-
related (8, 13). We therefore applied a 100-base-pair sliding win-
dow and divided our data into 1.47 million methylation segments 
(Supplemental Methods). In keeping with prior studies on tissues, 
the methylation ratio distribution across all methylation segments 
in plasma and white blood cell samples showed a density peak for 
hypermethylation and hypomethylation (Supplemental Figure 2). 
We selected regions with a minimum of ×10 coverage. When sep-
arated by annotation category (such as promoter, exon, intron), 
the distribution was consistent with the targeted regions (Supple-
mental Figure 3) (24). We observed that methylation segments in 
promoter regions were primarily hypomethylated whereas other 
categories were primarily hypermethylated (Figure 1C). We then 
compared the methylation ratio distribution in baseline, progres-
sion plasma, and healthy volunteer plasma with white blood cell 
DNA, and we observed significant differences among plasma 
and white blood cell samples (P < 10–15, Kruskal-Wallis test). The 
difference was more pronounced in plasma samples from cancer 
patients compared with healthy volunteers (Z scores for promoter 
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with ct-MethSig segments. We observed significant enrichment 
(adjusted P < 10–4) for targets of the polycomb repressor complex 2 
(30) (PRC2-related category in the Molecular Signature Database 
or MSigDB, Table 1) that was of particular interest, as a previous 
mRNA profiling study showed that prostate cancer was distin-
guished from noncancer prostate epithelium by downregulation 
of genes that are repressed by PRC2 (31). We noted that these 
PRC2 genes were only in the ct-MethSig hypermethylated group, 
representing an increase in methylation ratio with increasing frac-

hypomethylated group: r = –0.74, P < 1.4 × 10–3, Pearson correla-
tion; Supplemental Figure 8), and hormone-sensitive prostate 
cancer (HSPC) (29) (hypermethylated group: r = 0.91, P < 10–60; 
hypomethylated group: r = –0.61, P < 10–17, Pearson correlation; 
Supplemental Figure 9).

Functional enrichment identifies hypermethylation of polycomb 
repressor complex 2 targets in circulating prostate cancer DNA. To 
study the biological processes underlying PC1, we performed 
gene set enrichment analysis (GSEA) on genes overlapping 

Figure 2. Tumor fraction is the 
major determinant of the plasma 
methylome. (A) Bar chart shows 
the variance associated to each 
principal component (PC) on 
19 baseline samples; the red 
dotted line indicates cumulative 
explained variance. (B) Correlation 
between PCs and tumor fraction. 
Size and the color of each circle 
show Pearson correlation and 
background shading denotes P 
value). (C) Correlation of genomi-
cally determined tumor fraction (y 
axis) and PC1 values (x axis) from 
high-coverage targeted methyl-
ation sequencing on 19 baseline 
samples, 16 progression plasma 
samples, and control samples 
(n = 4 healthy volunteer plasma 
samples, LNCaP prostate cancer 
cell line).
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Figure 3. Methylation ratio across ct-MethSig can be a proxy for tumor fraction. (A) Top 1000 segments (ct-MethSig) with the highest correlation coefficient 
between PC1 and methylation ratio. (B) ct-MethSig methylation ratio distribution by patient plasma sample split by negatively correlated and positively correlated 
segments. (C) Venn diagram showing the overlap of negatively correlated genes (dark blue) in ct-MethSig segments with targets of EED, SUZ12, and embryonic 
stem cells (ES) with H3K27ME3 marks. The number in white denotes the number of genes in the ct-MethSig negatively correlated group. (D) Circulating tumor 
fraction methylation signature comprises segments specific to either normal or malignant prostate epithelium. Left: Methylation ratios of ct-MethSig hypermeth-
ylated (n = 520) and hypomethylated (n = 480) groups from LNCaP (n = 4), healthy volunteers (n = 4), and normal prostate epithelium samples (PrEC). Right: The 
ct-MethSig hypermethylated and hypomethylated groups can be split into prostate cancer–specific segments and prostate epithelium–specific segments.
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tion. Overall, the 520 negatively correlated segments included 231 
genes. Of these, 41 were collectively either components of PRC2-
EED (embryonic ectoderm development) (32) and SUZ12 (sup-
pressor of zesta 12) (33) or H3K27ME3 (trimethylation of lysine 
27 on histone H3 protein subunit) (Figure 3C). We performed a 
permutation test and the result indicated that PRC2-regulated 
components were more enriched in ct-MethSig as compared with 
1000 randomly selected genomic segments (Supplemental Figure 
10). Our discovery of hypermethylation in promoters upstream of 
these genes provides a biological explanation for their downregu-
lation and introduces a strategy for extending this biological dif-
ference to a liquid biopsy application (21, 31).

The circulating tumor methylation signature comprises segments 
specific to either normal or malignant prostate epithelium. We posited 
that ct-MethSig included components that were specific to either 
malignant or nonmalignant prostate epithelium. We plotted the 
kernel density estimation of the ct-MethSig methylation ratios in 
whole-genome bisulfite sequencing data derived from the nonma-
lignant prostate epithelium cell (PrEC) line (34), and we observed 
that there was a bimodal distribution (Figure 3D). We therefore 
adapted the Gaussian mixture model on methylation ratios of 
ct-MethSig segments from the prostate cancer cell line LNCaP 
and our 2 healthy volunteer plasma samples, and then we used the 
fitted Gaussian distribution on normal PrECs. In PrECs, we iden-
tified segments whose methylation ratio distribution aligned with 
either LNCaP or healthy volunteer plasma. We concluded that the 
former segments with methylation ratios in normal prostate epi-
thelium similar to LNCaP were prostate epithelium–specific, while 
the segments with methylation ratios similar to healthy volunteer 
plasma were prostate cancer–specific (Figure 3D). We then con-
firmed these findings by showing that CRPC metastases (bone, 
bladder, liver, and lymph nodes, described further in Supplemen-
tal Table 4) included segments attributed to both normal and can-
cerous prostate epithelium, whereas normal prostate (54-year-old 
male donor, ENCODE donor ID: ENCDO451RUA) included only 

segments attributable to normal prostate epithelium. As a result, 
we could split ct-MethSig into 2 components, circulating prostate 
cancer–specific and normal prostate-specific signatures. Finally, 
we used methylation microarray data from 553 prostate cancers 
from TCGA and 12 CRPC adenocarcinoma from Beltran et al. (21) 
to show that the distribution of ct-MethSig segments in localized 
prostate cancer and CRPC tissue includes both cancer and normal 
components (Supplemental Figure 11).

Methylation signatures specific to an individual’s cancer. We were 
next interested in plasma DNA methylation changes that could 
potentially identify distinct methylation subtypes. The second prin-
cipal component was driven by a single patient (patient 02), so we 
have not investigated further. We focused on the third principal com-
ponent, where we found only a weak correlation with tumor fraction 
(r = 0.01, P = 0.96, Pearson correlation) (Figure 2B). Similar to the 
methodology applied to ct-MethSig, we first identified the top 1000 
segments that were most correlated with this component’s values. 
In contrast to ct-MethSig, these were predominantly positively cor-
related (Figure 4A). Using the median of every segment’s methyla-
tion ratio, we were able to incorporate array-based methylation data 
from biopsies from intermediate-risk HSPC (29) and mCRPC (21). 
We found that the median methylation ratio in CRPC plasma and 
tumor samples presented a greater variability in contrast to HSPC 
or white blood cells (Figure 4B and Supplemental Figure 12). We 
noted that, in contrast to ct-MethSig, a change in tumor fraction 
before and after treatment did not change the median methylation 
ratio of the top-correlated segments with PC3 (Figure 4C). Similar-
ly, interpatient differences were greater than intrapatient variability 
in multiple metastases and plasma harvested from the same patient 
at autopsy (Figure 4D and Supplemental Table 4).

Functional enrichment analysis on the top 1000 segments 
showed enrichment in histone H3 trimethylation markers (Sup-
plemental Tables 5 and 6). We hypothesized that this methylation 
signature was regulated by a common transcriptional pathway. 
Therefore, we searched for known transcriptional factor binding 
sites (TFBSs) adjacent to within 75 base pairs of the start of the top 
1000 segments, using a protocol described previously (35). Nota-
bly, the AR binding motif was the only significantly overrepresent-
ed binding site (local enrichment P = 6 × 10–4, global enrichment P 
= 3 × 10–16; Figure 4E and Supplemental Table 7). We denoted this 
profile AR-MethSig.

AR-MethSig hypomethylation strongly associates with AR copy 
number gain. Next, we extracted genome-wide copy number pro-
files from LP-WGS and confirmed high similarity among results 
from the same sample with and without bisulfite treatment (Sup-
plemental Figure 13). Using LP-WGBS from plasma samples, we 
observed copy number alterations at a frequency consistent with 
previously described studies of mCRPC tissue or plasma (20, 36) 
(for example, most commonly: 8q21-24 gain: prevalence ≥70%; 
Xq12 gain: prevalence ≥60%; 8p21 loss: prevalence ≥50%, Sup-
plemental Figure 14). We observed more copy number chang-
es with increasing PC1 values, as an increasing tumor fraction 
improved copy number detection (Supplemental Figure 15). We 
then confirmed that ct-MethSig or AR-MethSig was not located 
more frequently in regions of copy number alterations (Supple-
mental Table 8). To integrate genomic copy number data with spe-
cific methylation signatures, we evaluated the correlation of the 

Table 1. Functional enrichment analysis of genes  
in ct-MethSig segments

Gene set ID ct-MethSig  
enriched gene set

P value  
adjusted

Genes input/ 
background, n

Input: negatively correlated genes
M10731 BENPORATH_ES_WITH_H3K27ME3 1.43 × 10–07 34/1118
M7617 BENPORATH_EED_TARGETS 4.49 × 10–07 32/1062
M8448 BENPORATH_PRC2_TARGETS 1.03 × 10–05 23/652
M16955 LIVER_CANCER_WITH_H3K27ME3 4.44 × 10–05 13/228
M9898 BENPORTATH_SUZ12_TARGETS 1.61 × 10–04 27/1038

Input: positively correlated genes
M6441 HCMV_INFECTION_18HR 1.31 × 10–02 8/204
M14437 AML_CLUSTER_5 1.31 × 10–02 4/40
M14791 COLORECTAL_ADENOMA 4.23 × 10–02 9/324
M1949 NPC_HCP_WITH_H3K4ME2 4.23 × 10–02 10/393

The analysis included 231 genes. The P value was corrected for multiple 
statistical testing (Benjamini-Hochberg). Background refers to the total 
number of genes in that category.
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Figure 4. Methylation signatures that could allow subgrouping of mCRPC. (A) Top 1000 segments with the highest correlation coefficient between 
PC3 and methylation ratio. (B) Methylation ratio of top 1000 segments highly correlated with PC3 values derived from plasma, white blood cell, 
HSPC tumor, and CRPC tumor (CASCADE trial). (C) Comparison of intraindividual changes in the top-correlated segments defined by targeted 
methylation NGS on plasma DNA and changes in tumor fraction. The y axis denotes the difference (Δ) of mean methylation ratio of the top-cor-
related segments between baseline and progression samples and the x axis denotes the difference in tumor fraction. (D) Median methylation ratio 
of the top-correlated segments of different metastatic sites by patient from the CASCADE rapid warm autopsy program. (E) AR binding motif that 
is overrepresented in regions adjacent to the top correlated segments (top). The consensus AR binding motif is shown as a reference (bottom). (F) 
Methylation ratio of AR-MethSig segments of AR gain group (CRPC metastases n = 5, CRPC plasma n = 18) and nongain group (CRPC metastases n 
= 8, CRPC plasma n = 17; Mann-Whitney U test). (G) Overall survival analysis (start of ADT to death) for AR-MethSig low group versus AR-MethSig 
high group (Mantel-Cox log-rank test).
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(38). To date, methylation NGS data on large mCRPC cohorts 
linked to clinical outcomes remains limited; international efforts 
have focused on obtaining genomic and transcriptomic data from 
tumor biopsies (21, 36, 39). In the study by Beltran et al., select-
ed methylation markers from CRPC patients were used to clas-
sify tumors with neuroendocrine differentiation. Pan-genome 
copy numbers and methylation patterns in cancer tissues can be 
profiled concurrently and coevolve in advanced prostate cancer 
(40–42). Here, we identified AR-MethSig spanning 1000 genomic 
regions in the mCRPC plasma; these segments appear to identify 
a subgroup of cancers characterized by a more aggressive clinical 
course and enriched for AR copy number gain. Interestingly, we 
also found that they had hypomethylation at putative AR binding 
sites. Previous studies have reported worse outcome for patients 
with AR gain in plasma (16, 17) and given the high overlap between 
this genomic lesion and AR-MethSig, it is possible that our meth-
ylation signature identifies the same phenotype. Studies in more 
prostate cancer patients across the disease spectrum and healthy 
volunteers are required to validate our methylation subtyping sig-
natures and confirm response prediction.

Our study identified methylation changes in 1000 genomic 
segments that can be used to track circulating tumor DNA. This 
could address some of the challenges inherent in plasma genom-
ic studies, including the paucity of common genomic events (20, 
36) and clonal hematopoiesis in older populations (43), that limit 
sensitivity and population-based testing. The plasma methylome 
could therefore represent an important source of information 
that complements or replaces genomic testing. In conclusion, our 
study uses methylation features from plasma DNA to track circu-
lating prostate cancer DNA and identify subtypes of mCRPC with 
distinct biological mechanisms and differential clinical outcomes.

Methods
Study design. Plasma samples were collected within 30 days of treat-
ment initiation and at progression in 3 biomarker studies. These cohorts 
have been described previously (16, 17) (Supplemental Table 1). Brief-
ly, patients needed to have histologically or biochemically confirmed 
prostate adenocarcinoma and be starting abiraterone or enzalutamide 
for progressive mCRPC. Patients were required to receive abiraterone 
or enzalutamide until disease progression, as defined by at least 2 of the 
following: a rise in PSA, worsening symptoms, or radiological progres-
sion defined as progression in soft-tissue lesions measured by computed 
tomography (CT) imaging according to modified Response Evaluation 
Criteria in Solid Tumors or progression on bone scanning according 
to criteria adapted from the Prostate Cancer Clinical Trials Working 
Group 2 guidelines. In keeping with this being a discovery analysis in the 
roadmap to development of a methylation-based biomarker, we priori-
tized patients with sufficient vials to allow both genome and methylome 
assessment. Metastases were obtained at rapid warm autopsy in the 
Peter MacCallum warm autopsy program CASCADE (Cancer Tissue 
Collection After Death, Supplemental Table 2) (44).

Plasma DNA sequencing. Circulating DNA (10–25 ng) was extract-
ed from plasma using the QIAamp Circulating Nucleic Acid kit (Qia-
gen) and quantified using the Quant-iT high-sensitivity Picogreen 
double-stranded DNA Assay Kit (Invitrogen by Thermo Fisher Sci-
entific). Germline DNA was extracted from white blood cells using 
the QIAamp DNA kit (Qiagen). Genomic NGS was performed as 

copy number of every segment across the genome and PC1 val-
ues (Kruskal-Wallis test, Supplemental Figure 16). Most notably, 
we identified a significant difference in PC3 value distributions 
when comparing AR copy number gain and AR nongain samples 
(P = 0.018, Kruskal-Wallis test, Supplemental Figure 17). Given 
the association of PC3 values with AR copy number, we confirmed 
that patient plasma and tissue samples with AR gain had a signifi-
cantly lower AR-MethSig methylation ratio than AR copy number 
normal samples (P < 0.001 and P = 0.023, respectively, Wilcoxon 
signed-rank test; Figure 4F).

The AR-regulatory methylation signature may identify distinct 
clinical phenotypes. We found a high agreement for the medi-
an methylation ratio of AR-MethSig extracted from high-cov-
erage targeted NGS and LP-WGBS (95% limits of agreement: 
–0.136–0.076; Supplemental Figure 18), again supporting the use 
of LP-WGBS, which is amenable to clinical implementation for 
methylation-based patient stratification. We did not identify any 
hormone-sensitive cancers harboring a low AR-MethSig median 
methylation ratio. Likewise, neither of the 2 commonly studied 
AR-regulated prostate cancer cell lines (LNCaP and VCaP, Supple-
mental Figure 12) harbored a low AR-MethSig median methylation 
ratio. We were therefore interested in evaluating the clinical rele-
vance of AR-MethSig, and as we had not observed a change over 
time in AR-MethSig median methylation ratio, we chose fixed time 
points over the disease independent of the time of sampling: name-
ly time from start of ADT to death. We observed that AR-MethSig 
low cancers had poor clinical prognosis (HR = 8.18, 95% CI = 1.93–
34.76, P = 0.0044; Mantel-Cox log-rank test; Figure 4G).

Discussion
Here we characterize the plasma methylome in mCRPC and iden-
tify prostate cancer–specific methylation signatures. By using a 
100-base-pair sliding window strategy, we obtained close to 0.5 
million methylation segments in all of the baseline plasma DNA 
samples subject to custom targeted enrichment NGS, and we 
used them to construct our PCA. What we believe is novel to our 
approach was the construction of our model using solely mCRPC 
plasma DNA with a wide range of tumor fractions. These had a 
variable ratio of normal DNA primarily arising from white blood 
cells (14), and tumor DNA that harbors methylation changes that 
we found are either prostate epithelium–specific or cancer-specif-
ic. By using the median methylation ratio of ct-MethSig (segments 
that highly correlated with PC1), we were able to implement our 
signature in methylation data with variable CpG coverage, includ-
ing methylation microarrays or reduced representation bisulfite 
sequencing. Ct-MethSig did not include genes widely known to be 
hypermethylated in prostate cancer, such as GSTP1 (28, 37). This 
finding could be explained by highly variable methylation levels at 
these loci in noncancerous plasma DNA.

Because the majority of methylation features extracted from 
plasma DNA are related to tumor fraction, extracting methylation 
information specifically related to an individual’s cancer could be 
challenging across a range of tumor fractions, as seen in clinical 
practice and exemplified in our cohort. Higher coverage NGS may 
address this challenge, with capture of sufficient tumor-specific 
reads even at low circulating tumor. Tissue methylation has been 
used for subtyping in other cancer types, such as brain tumors 
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Study approval. Plasma samples were separately approved by the 
Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori 
(IRST), Meldola, Italy (REC 2192/2013), the Royal Marsden, Lon-
don, United Kingdom (REC 04/Q0801/6), and the PREMIERE trial 
(EudraCT: 2014-003192-28, NCT02288936) that was sponsored and 
conducted by the Spanish Genito-Urinary Oncology Group (SOGUG). 
Metastatic samples obtained were approved by the Peter MacCallum 
warm autopsy program, CASCADE (HREC 15/98). All patients provid-
ed written informed consent for these analyses. 
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described previously (16). For methylation assessment, raw plasma 
DNA was bisulfite treated using the ZYMO Gold Kit per the manu-
facturer’s protocol. We adapted Swift Bioscience Methyl-Seq to gen-
erate libraries. CpGs were selected from prior data generated using 
the Illumina Infinium Human Methylation 450k microarray (Roche 
Nimblegen targeted capture kit, Epi CpGiant). Probes were designed 
to hybridize to strands of fully methylated, partially methylated, and 
fully unmethylated derivatives of the target (Supplemental Material). 
Libraries were quantified by KAPA library quantification kit (Roche) 
before pooling and sequencing on an Illumina HiSeq 2500 using 
paired-end 100-base-pair reads. Sequencing matrices for targeted 
methylome and LP-WGBS are included in Supplemental Tables 2 and 
3, and details on the pipelines for analysis of sequencing data are pro-
vided in Supplemental Methods.

Principal component analysis of targeted plasma methylome. Meth-
ylation segments with methylation ratios available in all baseline 
samples (n = 19) and standard deviation values included in the upper 
2 quartiles were subjected to principal component analysis (FactorM-
ineR R package v1.41) (45). Significant principal components were 
determined using a permutation test as implemented in the jackstraw 
R package (v1.2) (https://CRAN.R-project.org/package=jackstraw). 
The projection of all the samples based on the PCA eigenvectors was 
based on the methylation ratio of regions used in the initial PCA for all 
the samples. Missing values were imputed based on the PCA method 
as implemented in the missMDA R package (v1.13) (46).

Tumor fraction estimation. Genomically determined tumor frac-
tion was determined from targeted NGS using CLONET as described 
previously (16, 22). On high-coverage targeted methylation NGS, we 
calculated PC1 values as described above, and the median of PC1 
values extracted from healthy volunteers was set as 0%, whereas 
the median of PC1 values derived from LNCaP samples was set as 
100% tumor purity. The tumor fraction of all the plasma samples was 
obtained with interpolation using PC1 projected values. For tumor 
fraction estimation based on LP-WGS on bisulfite-treated or nontreat-
ed plasma DNA, we used ichorCNA (47) (Supplemental Methods). For 
LP-WGBS, we also used PC1 projected values.

Statistics. Pearson correlation was used to measure the associ-
ation between 2 parameters (principal component values versus 
genomically determined tumor fraction estimation, or different 
approaches of tumor fraction estimations). The association between 
copy number status of each region and principal components was 
estimated using the Kruskal-Wallis test. Mann-Whitney U test was 
used to test significance between 2 groups (AR gain versus AR non-
gain; AR-MethSig high group versus AR-MethSig low group). Hazard 
ratio in overall survival analysis was calculated using the Mantel- 
Haenszel method. For all tests, a significance threshold of 0.05 was 
required unless otherwise specified.

Data availability. The data that support the findings of the study 
have been deposited in the European Genome-phenome Archive 
(EGA study ID: EGAS00001003958).
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