Supplemental Table 1. Antibodies

Primary Antibodies (Supplier Cat#)	Secondary Antibodies (Supplier Cat#)
CD31-Mouse- (Dianova-DIA310)	Biotinylated Goat anti Rat / Rabbit &
CD31-Human- (Dako GA610)	Mouse IgG (H+L) (Vector Labs BA-9401,
CD4 (BD Pharmingen 550280)	BA-1000 & BA-9200 respectively).
CD8a (eBioscience 14-0808-82)	Goat anti Rat (H+L) Cross-Adsorbed
CD3 & CD45 (Biolegend 100201 & 103101)	Alexa Fluor 488 (ThermoFisher A- 11006).
Apelin (Santa Cruz sc33469)	Coot opti Dobbit (U.I.) Cross Adoorbod
Mac-2 (Cedarlane: CL8942AP)	Alexa Fluor 568 (ThermoFisher A-
Ym1 (StemCell: 60130)	11036).
APJ (Phoenix H-001-79)	
ESM-1 (MyBiosource MBS2006250)	Adsorbed Secondary Antibody Alexa
EGFL7 (BIOMATIK CAU21428)	Fluor 568 (ThermoFisher A-11057)
F4/80 (Biolegend 123102).	Donkey anti-Rat IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa
CD14 & CD16 (STEMCELL 60004AZ	Fluor 488 (ThermoFisher A-21208).
& 0004 IF ⊑ <i>)</i> .	
T-AKT, P-AKT ⁴⁷³ , T-eNOS, P-	
eNOS ¹¹⁷⁷ and Actin-b (Cell signalling	
4691, 4060, 5880, 9571 and 4970 /	
3700)	
Rabbit Anti-ESM1 polyclonal antibody (Causabio; CSB- PA007825LA01HU)	
Anti-VE-Cadherin Antibody (Sinobiological 50192-T56)	
Anti-CD34 Monoclonal Antibody	

(Thermofischer; QBEND/10, MA1- 10202)	
Anti human Apelin polyclonal antibody (Abcam; ab59469)	
Anti-fibrinogen antibody (DAKO; A008002-2)	

Supplemental Table 2. Mouse primers for qRT-PCR

Esm1	F: 5' AGCGAGGAGGATGATTTTGGT 3'
	R: 5' TGCATTCCATCCCGAAGGT 3'
ApIn	F: 5' TAGCCCCTGACACTGGTTGTC 3'
	R: 5' TTCTCCATCCCCCAAAAGC 3'
Pdgfb	F: 5' CCCTCGGCCTGTGACTAGAA 3'
	R: 5' AATGGTCACCCGAGCTTGAG 3'
Pecam1	F: 5' AGGACGATGCGATGGTGTATAA 3'
	R: 5' AAGACCCGAGCCTGAGGAA 3'
Tnfa	F: 5' ATGATCCGCGACGTGGAA 3'
	R: 5' TAGGCACCGCCTGGAGTTC 3'
Vegfa	F: 5' GCAGGCTGCTGTAACGATGA 3'
	R: 5' TCCGCATGATCTGCATGGT 3'
Cxcl11	F: 5' GGGCCGATGCAAAGACA 3'
	R: 5' GAGATGAACAGGAAGGTCACAG 3'

Supplemental Table 3. Human primers for qRT-PCR

APLN	F: 5' CCCATGCCCACATATTGCA 3'
	R: 5' TCAGTTTGAGGCCACTTGACCTA 3'
PECAM	F: 5' AGTGGAGTCCAGCCGCATAT 3'
	R: 5' CAGTTCGGGCTTGGAAAATAGT 3'
PDGFB	F: 5' AGATCGAGATTGTGCGGAAGA 3'
	R: 5' GCTGCCACTGTCTCACACTTG 3'
GAPDH	F: 5' GATTCCACCCATGGCAAATT 3'
	R: 5 TGATGGGATTTGCATTGATGAC 3'
ESM1	F: 5' GGTGGACTGCCCTCAACACT 3'
	R: 5' GTCGTCGAGCACTGTCCTCTT 3'

Supplemental Fig 1: Graft coronary arterial injury post-transplantation. A, Loss of continuity of the arterial endothelium in hearts at 2 weeks posttransplantation. Photomicrographs show immunofluorescent staining of the endothelial marker Pecam1 (CD31; green) with DAPI nuclear staining (blue). Arrows indicate areas of endothelial loss / gaps in endothelium (quantitation is in figure 1B). B, Arterial endothelial apoptosis in hearts at 2 weeks post- transplantation. Confocal photomicrographs show double immunofluorescent staining of the endothelial marker Pecam1 (CD31; green) with cleaved caspase 3 (red). Insets show caspase 3+ endothelial cells. Colocalization is quantitated, and is shown in Figure 1B (right panel). C, Fibrin associated with the graft arterial (upper panels) and microvascular (lower panels) endothelium post-transplantation. Photomicrographs show double immunofluorescent staining of the endothelial cell marker Pecam1(CD31; green) and fibrin (red). n=4-15. Scale bar = 50µm.

Supplemental figure 3: Apelin expression in heart grafts. A, Confocal photomicrographs show double immunofluorescent staining of apelin (red) and endothelial CD31 (green) in heart grafts at 2 weeks post-transplant (isograft hearts with reperfusion injury are represented in the top panel *vs* heart allografts with immune and reperfusion injury are in the lower panel). Apelin knockout (*ApIn*^{-/y}) heart grafts show no apelin staining. Scale bar = $50 \ \mu\text{m}$. B, Quantitation of endothelial cell co-localization with apelin (n=12-15 biological replicate hearts/ group). Mean \pm SEM; **P<0.01 by Student's t-test. C, Photomicrographs of reference human left anterior descending artery (LAD samples; upper panel) and human LADs with vasculopathy (n=4, lower panel) double immunofluorescence stained for the human endothelial marker CD34 (green) and apelin (red). Scale bar = $50 \ \mu\text{m}$.

Supplemental figure 4: *Vegfa* expression in mouse heart allografts. A, Isolated coronary arteries (consecutive samples pooled in pairs for analysis (n=3-8 pairs)), and B, myocardium (n=6-15 biological replicates) at 2 and 6 weeks post-transplant, relative to normal hearts. Mean \pm SEM; **P<0.01 and NS= non-significant by one way ANOVA with Bonferroni's post-hoc test.

Supplemental figure 5: Microvessel density in mouse heart grafts. Immunohistochemical staining of endothelial marker A, CD31 (brown) or B, VE-Cadherin (brown) among mouse heart grafts at 2 and 6 weeks post-transplant. Quantitation is shown in Figure 1A and Figure 3C. C, Quantitation of VE-Cadherin⁺ microvessels at 6 weeks post-transplantation. n=6-10 biological replicate grafts/ group. Scale bar= 50µm. Mean ± SEM; NS= non significant, **P<0.01 by one way ANOVA with Bonferroni's post-hoc test. D, Photomicrographs show VE-Cadherin microvessel staining of hearts of allograft recipient mice treated with saline (n=8) or apelin-17-analogue (n=9) from week 2 through week 6 post transplantation. Quantitation of microvessel density is shown in E. **P<0.01 by Mann Whitney.

Supplementary figure 6: An apelin-17 analogue promotes closure and tip-cell differentiation in wounded endothelial cell monolayers. A, The synthetic N-MeLeu9-apelin-17 (apelin-17) agonist peptide, compound 11 from reference 30. B, HUVECs were transfected with non-specific (siNS) or *APLN* siRNA, then plated at confluence. The monolayers were wounded, then treated with VEGF (50 ng/mL) or apelin-17 (1uM). Quantitation of the experiments is shown in Figure 3D. n=5. Scale bar = 50 μ m. C, Synthetic apelin-17 agonist peptide induces angiogenic sprouting in 3D HUVEC cultures. n=3. Scale bar = 95 μ m. D, Quantitation of angiogenic sprouting in mock-, VEGF- (15 ng/ml), or apelin-17- (1 μ M) stimulated cultures. E, Tip cell gene expression in cultures from (D). n=3 biological replicates. Mean ± SEM; * p<0.05, ** p< 0.01 by one way ANOVA with Bonferroni's post-hoc test.

Supplemental figure 8: apelin-17 inhibits monocyte adhesion to endothelial cell monolayers. Human umbilical vein endothelial cells were pretreated with TNFa (100 ng/mL) for 18 hours, then primary human monocytes were added to the co-culture for 2 hours in the presence of apelin-17 with or without the nitric oxide synthase inhibitor N ω -Nitro-L-arginine methyl ester hydrochloride (L-NAME), as indicated. The (phase-bright) monocytes adherent after gentle washes were photographed. The quantitation is shown in Figure 5D. Representative of n=5 biological replicates. Scale bar = 50 µm.

donor APLN KO male splenocytes HY tetramer IFN 2

Supplementary figure 10: Gating strategy for male antigen specific CD4 T cells: A depiction showing the gating strategy used to identify live CD19-CD8 β - CD45.1⁺(host) IFN- γ^+ HY-I-A^{b+} CD4⁺ cells from the spleens of the *ApIn*^{-/y} (1st row) or *ApIn*^{+/y} (2nd row) heart grafted mice, 2 weeks post-transplantation. Splenocytes from female Marilyn-*Rag2*^{-/-}*pd1*^{-/-} mice were used as a positive control cells (3rd row). Isotype control of anti-mouse IFN- γ antibodies (4th row) were used to exclude non-specific binding from the staining (n=4-7 biological replicates). The same gating strategy is used for determining the frequencies of CD44^{hi} cells.