

3	Supplemental Figure 1. High SRSF1 levels correlate with poor prognoses of glioma
4	patients. (A) Box plots comparing SRSF1 mRNA levels between NB and GBM tissues using
5	the data from three published microarray datasets. Boxes represent the 25th and 75th
6	percentiles, lines represent the median, and whiskers show the minimum and maximum points.
7	Oncomine TM (Compendia Bioscience, Ann Arbor, MI) was used for data analysis and
8	visualization. Bredel et al: NB (n=4), GBM (n=27). Shai et al: NB (n=7), GBM (n=27).
9	TCGA: NB (n=10), GBM (n=542). Data are expressed as normalized expression units.
10	P < 0.001 by 2-tailed Student's t test. FC, fold change. (B , C) SRSF1 protein levels from
11	Figure 1B and 1C were quantified and normalized against those of β -actin. Data are presented
12	as mean \pm SD, n=3. (D) IHC staining of Ki-67 in control (nontumoral) and glioma tissues.
13	Scale bar, 20 µm. (E) Comparison of Ki-67 LIs (%) among 20 normal brain tissues and 120
14	gliomas of various grades. Data are presented as box plots. ***P<0.001 by 1-way ANOVA
15	with Tukey's post-test. (F) Kaplan-Meier analysis of the TCGA data. Patients with gliomas
16	(including 120 LGGs and 120 GBMs) were stratified into high and low SRSF1 expression
17	subgroups using the median of relative SRSF1 levels. P<0.0001 by log-rank (Mantel-Cox) test.
18	(G) Kaplan-Meier analyses of the DFS and OS of our glioma patients with similar KPS (<90
19	or \geq 90). Patients were stratified into high and low SRSF1 expression subgroups using the
20	median of SRSF1 LIs. P<0.0001 by log-rank (Mantel-Cox) test.

25	Supplemental Figure 2. The oncogenic roles of SRSF1 in glioma cells. (A) Confirmation
26	of SRSF1 knockdown efficiencies by Western blot in U87MG, U251, LN229 and SNB19
27	cells transiently transfected with SRSF1 siRNAs (si-SRSF1-1#, si-SRSF1-2#) or control
28	siRNA (si-NC). Loading control: β -actin. (B) Growth curves of U87MG, U251, LN229 and
29	SNB19 cells transfected with the siRNAs as indicated. (C) Colony formation assay results. (D)
30	Transwell invasion assay results. (E) Schematic of SRSF1 domains, antibody epitope and
31	SRSF1-mu, the shRNA resistant synonymous mutant of SRSF1. (F) Confirmation of SRSF1
32	overexpression efficiency by Western blot in SW1088 cells stably transfected by empty vector
33	(vec) or HA tagged SRSF1 (SRSF1-wt) plasmid. Loading control: β-actin. (G) EdU staining
34	results. (H) Transwell invasion assay results. Data in (A-D, G, H) are presented as mean ± SD,
35	n=3 for (A), n=5 for (B-D , G , H). *** P <0.001 by 1-way ANOVA with Dunnett's post-test for
36	(A, B), 2-tailed Student's t test for (C, D, G, H). Representative images from biological
37	triplicate experiments are shown for (C, D, G, H).

Supplemental Figure 3. In vivo study of SRSF1 knockdown on the intracranial 41 xenograft formation using U87MG cells. (A) Upper: Bioluminescence images. Bottom: 42 IHC of SRSF1 in outgrowing tumor slices. Scale bar, 20 µm. Images of representative mice 43 and tumors are shown. (B) Bioluminescence was quantified at day 4, 11, 18 and 25 after 44 implantation. Data are presented as mean \pm SD, n=8 for each group. ***P<0.001 by 1-way 45 ANOVA with Dunnett's post-test. (H) The OS of the nude mice were analyzed by the 46 Kaplan-Meier method. **P<0.01 for the difference of WT+vec vs. KD+vec and 47 KD+SRSF1-mu vs. KD+vec by log-rank (Mantel-Cox) test. 48 49

Supplemental Figure 4. Differential expression of coding and non-coding RNAs affected 52 by SRSF1 in GBM cells. (A) Heatmap of the coding genes differentially expressed among 53 the WT and KD groups of U87MG and U251 cells. The raw signal values from RNA-seq 54 were arranged by unsupervised complete linkage clustering. Red stands for upregulation 55 while blue stands for downregulation. (B) Gene ontology of SRSF1-regulated common 56 coding genes in U87MG and U251 cells. -Log₂ transformed fisher exact P values were 57 plotted for each enriched functional category. (C) Validation of gene expression changes by 58 qRT-PCR, with the genes sorted by their functions. Data are presented as mean \pm SD, n=3. 59 *P < 0.05, **P < 0.01, ***P < 0.001 by 2-tailed Student's t test. (**D**) Heatmap of the differentially 60 expressed non-coding RNAs among the WT and KD groups of U87MG and U251 cells. 61

Supplemental Figure 5. SRSF1 regulates MYO1B splicing to induce the full-length 65 MYO1B isoform. (A) Inclusion of exon 23 and 24 was examined by RT-PCR (primer set 2). 66 (B) MYO1B-fl% in SW1088 cells increases with exogenous SRSF1 expression in a dose 67 dependent manner. The dosage of plasmid for transfection are presented. The expression of 68 HA tagged SRSF1-wt was monitored by Western blot. The inclusion of exon 23 and 24 was 69 examined by RT-PCR (primer set 2). The lanes for MYO1B RT-PCR were on the same gel but 70 noncontiguous. (C) Upper: Structure and conservation of the human MYO1B exon 22-25. 71 Sequences of exon 23 (orange) and exon 24 (green) with potential SRSF1 binding site (red) 72 are presented. Bottom: Partial aligned sequence of MYO1B protein isoforms. Two IQ motifs 73 predicted by Prosite are indicated. (D) Schematic of MYO1B domains predicted by Prosite. 74 The percentages of *MYO1B*-fl to total *MYO1B* transcripts are presented using fl% in (A, B). 75 76

Supplemental Figure 6. MYO1B-fl remodels cytoskeleton and shows distinct localization 80 with MYO1B-t. (A) Line profile intensities of green fluorescence (Phalloidin) along the red 81 lines indicated in Figure 6D (left and middle panels), and cell area comparison of the 82 indicated cells (right panel). Data are presented as box plots, n=300. ***P<0.001 by 2-tailed 83 Student's *t* test. (**B**) Western blot of EGFP fused MYO1B-fl and MYO1B-t expressed in U251 84 cells using MYO1B and GFP antibodies. (C) Fluorescence images of the U251 cells 85 expressing EGFP fused MYO1B isoforms (green). Cell nuclei were counter-stained with 86 DAPI (blue). Representative images from six biological repeated experiments are shown. 87 Scale bar, 30 µm. (D) Comparison of the membrane indexes of EGFP fused MYO1B-fl and -t. 88 Data are presented as box plots, n=300. ***P<0.001 by Mann-Whitney test. (E) 89 Immunofluorescence of MYO1B in the sub-cell lines as indicated. Cell nuclei were 90 counter-stained with DAPI (blue). Representative images from biological triplicate 91 92 experiments are shown. Scale bar, 20 µm.

Supplemental Figure 7. MYO1B-fl promotes survival and tumorigenic abilities of GBM 96 cells. (A) Western blot confirmation of total MYO1B knockdown efficiencies in U87MG cells. 97 Loading control: β -actin. (B) Colony formation assays of the indicated cells. Representative 98 images from biological triplicate experiments are shown. (C) Colony formation efficiencies of 99 the U251 cells infected with empty lentivirus (vec), lentivirus expressing MYO1B-fl or 100 lentivirus expressing MYO1B-t. (D) Left: Confirmation of MYO1B-fl overexpression 101 102 efficiency by Western blot in U87MG cells. Loading control: β-actin. Right: Bioluminescence images of mice bearing intracranially glioma xenografts formed by the indicated U87MG 103 cells. Images of representative mice are shown. (E) Bioluminescence quantification of the 104 xenografts at day 4, 11, 18 and 25 after implantation (n=5 for each group). Data in (B, C, E) 105 are presented as mean \pm SD, n=5. **P<0.01, ***P<0.001 by 1-way ANOVA with Dunnett's 106 post-test for (**B**), ****P*<0.001 by 1-way ANOVA with Tukey's post-test for (**C**). 107

Supplemental Figure 8. MYO1B-fl isoform restores tumorigenesis defects caused by SRSF1 disruption in GBM cells. (A) Quantitation and data analysis of Figure 8B. Data are presented as mean \pm SD, n=5. ****P*<0.001 by 1-way ANOVA with Tukey's post-test. (B) Colony formation assay results in U87MG cells. Representative images from biological triplicate experiments are shown. (C) H&E staining brain slices of the nude mice with glioma xenografts. Images of representative tumors are shown.

Supplemental Figure 9. MYO1B-fl promotes gliomagenesis through PDK1/AKT and 121 PAK/LIMK pathways. (A) Heatmap of the phosphoproteins with altered ratios compared 122 between the groups as indicated. The data presented are non-biased adjusting results of the 123 124 raw signal values from Fullmoon phospho explorer antibody array. (B) Western blot of the indicated proteins in U87MG sub-cell lines. (C) Subcellular colocalization images (left) and 125 scatter plots (right) of exogenous MYO1B and endogenous p85 signals indicated in Figure 8E. 126 Pearson correlation test, r values are calculated by Image J. (D) Western blot of the indicated 127 proteins in U87MG sub-cell lines. (E) Western blot of the indicated proteins in U251 cells. 128 The lanes for MYO1B were run on the same gel but were noncontiguous. (F) Colony 129 formation assay results of the indicated cells. Data are presented as mean \pm SD, n=5. 130 ****P*<0.001 by 1-way ANOVA with Tukey's post-test. 131

Factors	DFS		OS	
Factors -	HR (95%CI)	Р	HR (95%CI)	Р
Gender	0.863 (0.582-1.280)	0.464	0.889 (0.600-1.318)	0.557
Age	1.000 (0.985-1.015)	0.990	0.998 (0.983-1.041)	0.833
Predominant side	1.354 (0.967-1.895)	0.077	1.272 (0.910-1.777)	0.159
Predominant location	1.292 (0.999-1.671)	0.051	1.287 (0.996-1.663)	0.054
IDH1/2 status	0.085 (0.048-0.151)	<0.0001	0.078 (0.044-0.139)	<0.0001
KPS	0.997 (0.972-1.022)	0.805	0.997 (0.973-1.023)	0.842
SRSF1 LI	1.043 (1.029-1.058)	<0.0001	1.045 (1.030-1.059)	<0.0001

Supplemental Table 1. Multivariate analysis for DFS and OS in patients with gliomas

Factors	DFS		OS	
Factors -	HR (95%CI)	Р	HR (95%CI)	Р
Gender	0.920 (0.637-1.329)	0.656	0.925 (0.640-1.336)	0.677
Age	1.022 (1.008-1.036)	0.002	1.021 (1.007-1.035)	0.003
Predominant side	0.963 (0.713-1.301)	0.806	0.953 (0.705-1.289)	0.756
Predominant location	1.291 (1.022-1.630)	0.032	1.283 (1.016-1.620)	0.037
Grade	5.557 (3.915-7.889)	<0.0001	5.622 (3.932-8.038)	<0.0001
IDH1/2 status	0.089 (0.055-0.146)	<0.0001	0.086 (0.052-0.141)	<0.0001
KPS	0.994 (0.972-1.016)	0.585	0.994 (0.972-1.016)	0.582
SRSF1 LI	1.050 (1.038-1.063)	<0.0001	1.049 (1.037-1.062)	<0.0001
Ki-67 LI	1.249 (1.206-1.293)	<0.0001	1.252 (1.209-1.297)	<0.0001

Supplemental Table 2. Univariate analysis for DFS and OS in patients with gliomas

	Total events		U87	U87MG		U251		Shared events	
AS type	U87MG	U251	activation	repression	activation	repression	activation	repression	
SE	918	912	568	350	513	399	196	133	
RI	103	106	44	59	60	46	17	15	
A5SS	138	127	84	54	63	64	19	15	
A3SS	110	112	55	55	48	64	11	7	
MXE	79	75	38	41	38	37	11	12	
sum	1348	1332	789	559	722	610	254	182	

Supplemental Table 3. Summary of the different AS events identified in U87MG and U251 cells affected by SRSF1

Abbreviations: AS: alternative splicing; SE: skipped exon; RI: retained intron; A5SS: alternative 5' splice site; A3SS: alternative 3' splice site; MXE: mutually exclusive exon; sum: summary.

Como	Exon location	Reads cove	rage (Ex::In)		Reads cove	rage (Ex::In)	D	AS
Gene		U87MG-WT	U87MG-KD	Ρ	U251-WT	U251-KD	- P	type
HNRNPM	chr19:8530246-8530364	1397::1932	3232::2476	2.55E-41	2036::3836	2804::3454	4.13E-30	RI
CD46	chr1:207941124-207941168	394::565	821::162	6.25E-34	103::844	192::601	3.58E-06	SE
P4HA1	chr10:74776653-74776657	1::456	91::205	2.543E-32	500::921	0::993	2.28E-41	A3SS
P4HA1	chr10:74790025-74790029	0::456	91::207	2.17E-27	502::915	3::990	4.59E-34	A5SS
LOC220729	chr3:197349058-197349201	57::0	14::240	8.67E-32	151::76	38:187	1.75E-20	SE
CTTN	chr11:70267576-70267686	2701::1081	613::1834	1.66E-31	854::1092	128::713	1.90E-14	SE
ATP2C1	chr3:130698093-130698263	363::349	38::574	7.28E-31	188::428	24::485	1.40E-14	SE
MYO1B	chr2:192265475-192265561	144::31	89::247	3.55E-28	115::55	49::284	1.35E-23	SE
MYO1B	chr2:192267358-192267444	97::88	49::217	9.16E-11	77::92	26::174	2.19E-09	SE
C11orf24	chr11:68029193-68030199	115::242	322::136	1.19E-27	7::217	28::188	1.46E-04	RI
PSMD11	chr17:30807649-30807771	846::227	1104::69	2.31E-27	722::342	827::118	2.54E-26	RI
DLG1	chr3:196802708-196802741	591::36	255::150	1.09E-26	908::41	545::95	2.45E-06	SE
PKD1P1	chr16:16443086-16443155	58::168	63::0	2.78E-26	125::321	146::108	2.25E-11	SE
PPM1A	chr14:60743723-60743809	77::187	138::28	2.41E-25	100::105	74::13	3.15E-09	SE
FAM122B	chrx:133923610-133923666	103::390	339::240	1.07E-24	158::735	439::436	1.26E-19	SE
CCDC107	chr9:35660855-35660937	343::2074	445::1185	1.43E-24	103::1772	193::830	1.38E-10	RI
OS9	chr12:58113882-58114046	533::146	227::407	2.10E-24	404::300	217::402	6.52E-08	SE
DBF4B	chr17:42809546-42809633	39::5	60::54	5.28E-05	186::30	99::110	6.75E-15	SE
USP53	chr4:120135225-120135377	85::284	199::83	6.57E-23	40::25	43::3	1.32E-04	SE
TMED5	chr1:93621593-93621641	408::170	445::17	1.09E-22	755::194	639::6	2.51E-21	SE
USP8	chr15:50776472-50776558	137::61	84::281	4.95E-22	212::84	85::249	1.21E-26	SE
MYEF2	chr15:48454874-48455090	154::228	256::67	8.91E-22	130::282	285::67	9.89E-30	SE
YPEL5	chr2:30371111-30371171	226::20	56::67	2.70E-20	78::0	49::13	4.56E-05	SE
GOLGA4	chr3:37402734-37402796	83::318	181::143	1.83E-19	56::278	97::147	2.20E-08	SE
CD47	chr3:107770786-107770817	98::1165	429::802	6.38E-19	33::1328	198::1235	1.76E-08	SE
ENO2	chr12:7028730-7028927	192::542	4::609	8.49E-18	37::205	1::256	2.09E-06	SE
MORF4L2	chrx:102939609-102939657	959::436	660::1104	2.75E-17	1376::221	1024::522	3.71E-10	SE
PRRC2C	chr1:171560291-171560343	89::50	54::216	5.63E-17	236::116	95::244	5.13E-22	SE
EIF4H	chr7:73604577-73604636	679::243	727::975	8.59E-17	1152::298	875::448	1.31E-04	SE

Supplemental Table 4. List of top 50 AS events shared by U87MG and U251 cell lines affected by SRSF1

CD97	chr19:14507154-14507285	15::357	127::284	1.44E-16	47::239	119::106	1.78E-14	SE
PYURF	chr4:89444649-89444654	0::351	116::242	2.10E-16	242::151	121::204	6.35E-05	A5SS
LSM14A	chr19:34717313-34717369	324::85	237::226	6.96E-16	581::96	249::128	1.06E-09	SE
HNRNPDL	chr4:83347616-83347786	426::1552	21::2905	3.58E-15	683::2030	29::3052	3.18E-17	SE
TNC	chr9:117810539-117810811	952::27	759::147	5.82E-05	896::72	487::308	1.96E-16	SE
PCGF3	chr4:726189-726287	149::14	131::113	1.56E-14	247::16	191::83	1.14E-12	SE
MPP5	chr14:67745735-67745967	6::74	64::39	8.67E-11	0::84	59::42	1.01E-16	A3SS
LRRFIP1	chr2:238659843-238659914	376::4	327::73	2.08E-14	340::6	206::117	7.32E-31	SE
UPF3A	chr13:115064315-115064475	335::359	175::800	2.56E-14	263::284	101::424	2.21E-12	SE
PRMT2	chr21:48056351-48056459	77::13	64::128	4.22E-14	127::95	94::325	4.49E-15	SE
GOLGA2	chr9:131029473-131029553	107::533	208::269	5.13E-14	192::508	166::195	2.53E-06	SE
MFF	chr2:228217230-228217289	57::821	159::418	5.58E-14	20::746	96::544	6.21E-09	SE
HMGN1	chr21:40719305-40719409	34::78	171::49	2.40E-12	27::61	126::5	2.03E-19	MXE
P4HA2	chr5:131534014-131534073	102::84	40::194	7.48E-14	81::24	50::83	3.27E-08	MXE
DNM1	chr9:131002264-131002275	122::117	85::334	7.98E-14	217::61	146::134	1.23E-09	SE
ESYT2	chr7:158545472-158545534	385::230	357::68	8.60E-11	302::346	314::95	1.53E-16	SE
RCOR3	chr1:211485697-211485829	134::31	76::118	2.20E-13	165::12	70::51	4.91E-10	SE
PPP3CC	chr8:22396982-22397011	106::423	162::186	5.26E-13	99::278	101::114	3.86E-05	SE
CHCHD7	chr8:57129239-57129313	273::63	413::10	5.58E-13	209::37	282::10	1.05E-05	SE
IRF3	chr19:50167931-50168103	29::23	2::141	6.53E-13	20::34	1::94	9.87E-07	SE
FLNA	chrx:153585619-153585642	1390::1691	926::3697	1.14E-12	1925::5242	646::8082	2.81E-12	SE

Abbreviations: Ex: exclusion; In: inclusion; RI: retained intron; SE: skipped exon; A3SS: alternative 3' splice site; A5SS: alternative 5' splice site; MXE: mutually exclusive exon.

Facture	WHO Grade				
Feature	ll (n=40)	III (n=40)	IV (n=40)		
Gender					
Male	22	22	27		
Female	18	18	13		
Age (Year, Mean±SD)	42.73±11.88	47.68±15.24	55.68±13.05		
Age < 50	29	22	10		
Age ≥ 50	11	18	30		
Predominant side					
Left	20	17	20		
Right	17	21	18		
Middle	3	2	2		
Predominant location					
Frontal lobe	30	26	19		
Temporal lobe	6	8	13		
Parietal lobe	1	3	5		
Occipital lobe	1	1	1		
Others	2	2	2		
IDH1/2 status					
Wild type (<i>IDH1/2</i>)	5	7	38		
Mutant type (<i>IDH1</i> R132H)	35	33	2		
KPS score					
< 90	23	24	26		
≥ 90	17	16	14		

Supplemental Table 5. The clinicopathological characteristics of the 120 glioma patients enrolled in this study

Abbreviation: SD, Standard deviation; KPS, Karnofsky performance score.

Supplemental Table 6. Sequences of siRNAs

Name	Sequences
si-SRSF1-1#-Sense	5'-AGGACAUUGAGGACGUGUUdTdT-3'
si-SRSF1-1#-Antisense	5'-AACACGUCCUCAAUGUCCUdTdT-3'
si-SRSF1-2#-Sense	5'-GAAAGAAGAUAUGACCUAUdTdT-3'
si-SRSF1-2#-Antisense	5'-AUAGGUCAUAUCUUCUUUCdTdT-3'
si- <i>MYO1B</i> -fI-1#-Sense	5'-GGCUCGAAGGGAAUUGAAAdTdT-3'
si-MYO1B-fl-1#-Antisense	5'-UUUCAAUUCCCUUCGAGCCdTdT-3'
si-MYO1B-fI-2#-Sense	5'-GCUCGAAGGGAAUUGAAACdTdT-3'
si-MYO1B-fl-2#-Antisense	5'-GUUUCAAUUCCCUUCGAGCdTdT-3'
si-NC-Sense	5'-GGUGGAACAAUUGCUUUUAdTdT-3'
si-NC-Antisense	5'-UAAAAGCAAUUGUUCCACCdTdT-3'

Name	Sequences
SRSF1-BamHI-Forward	5'-CGCGGATCCATGTCGGGAGGTGGTGTG-3'
SRSF1-EcoRI-Reverse	5'-CCGGAATTCTTATGTACGAGAGCGAGAT-3'
mu-SRSF1-Forward	5'-GACATCCGAACCAAAGATATCGAAGATGTATTCTACAAATACGGC-3'
mu-SRSF1-Reverse	5'-GCCGTATTTGTAGAATACATCTTCGATATCTTTGGTTCGGATGTC-3'
SRSF1-∆RRM1-Forward	5'-GGGAACAACGATTGCGGCCGTGGAACAGGC-3'
SRSF1-∆RRM1-Reverse	5'-GCCTGTTCCACGGCCGCAATCGTTGTTCCC-3'
SRSF1-∆RRM2-Forward	5'-CAGGCGGTCTGAAAACGGGCCCAGAAGTCC-3'
SRSF1-∆RRM2-Reverse	5'-GGACTTCTGGGCCCGTTTTCAGACCGCCTG-3'
SRSF1-∆RS-BamHI-Forward	5'-CGCGGATCCATGTCGGGAGGTGGTGTG-3'
SRSF1-∆RS-EcoRI-Reverse	5'-CCGGAATTCTTAATCAACTTTAACCCGGATG-3'
MYO1B-EcorR1-Forward	5'-CCGGAATTCTATGGCCAAAATGGAGGTGAAAACC-3'
MYO1B-Sal1-Reverse	5'-ACGCGTCGACTTAAGGGACAGCAACTTCAAGG-3'
MYO1B-miniF1-BamH1-Forward	5'-CGCGGATCCGCTCGAAAAATTCTGCGGGAAC-3'
MYO1B-miniF1-Hind3-Reverse	5'-CCCAAGCTTATGTTTCCAGGTGTGTTAAATCTGGC-3'
MYO1B-miniF2-Hind3-Forward	5'-CCCAAGCTTTTTGGGTTTAAATTGTTATGCAC-3'
MYO1B-miniF2-EcoR1-Reverse	5'-CCGGAATTCTCTTCTGAAAAAGGTACAAAAT-3'
MYO1B-miniF3-EcoR1-Forward	5'-CCGGAATTCTATGAATGTGTTTCAATTATTTTAC-3'
MYO1B-miniF3-Xho1-Reverse	5'-CCGCTCGAGAATTCTCTGAAGCGTAAACTC-3'

Supplemental Table 7. Sequences of cloning primers

Name	Sequences
sh-NC-Sense	5'-ccggTTCCTGGAACAATTGCTTTTACTCGAGTAAAAGCAATTGTTCCAGGAATTTTTg-3'
sh-NC-Antisense	5'-aattcAAAAATTCCTGGAACAATTGCTTTTACTCGAGTAAAAGCAATTGTTCCAGGAA-3'
sh-SRSF1-Sense	5'-ccggAAAGGACATTGAGGACGTGTTCTCGAGAACACGTCCTCAATGTCCTTTTTTTg-3'
sh-SRSF1-Antisense	5'-aattcAAAAAAAAGGACATTGAGGACGTGTTCTCGAGAACACGTCCTCAATGTCCTTT-3'
sh- <i>MYO1B</i> -fl-Sense	5'-ccggAAGCTCGAAGGGAATTGAAACCTCGAGGTTTCAATTCCCTTCGAGCTTTTTTg-3'
sh-MYO1B-fl-Antisense	5'-aattcAAAAAAAGCTCGAAGGGAATTGAAACCTCGAGGTTTCAATTCCCTTCGAGCTT-3'
sh-MYO1B-total1-Sense	5'-ccggAAGGTATTATGTTAAATAATAAACTCGAGTTTATTATTTAACATAATACCTTTTTTg-3'
sh-MYO1B-total1-Antisense	5'-aattcAAAAAAAGGTATTATGTTAAATAATAAACTCGAGTTTATTATTTAACATAATACCTT-3'
sh-MYO1B-total2-Sense	5'-ccggAAGCATATTACTCATAAATCATTCTCGAG AATGATTTATGAGTAATATGCTTTTTTg-3'
sh-MYO1B-total2-Antisense	5'-aattcAAAAAAAGCATATTACTCATAAATCATTCTCGAG AATGATTTATGAGTAATATGCTT-3'

Supplemental Table 8. Sequences of shRNAs

Name	Sequences
SRSF1-Forward	5'- GCCGCATCTACGTGGGTAAC-3'
SRSF1-Reverse	5'- GAGGTCGATGTCGCGGATAG-3'
ACTB-Forward	5'-GATCATTGCTCCTCCTGAGC-3'
ACTB-Reverse	5'-ACTCCTGCTTGCTGATCCAC-3'
E2F1-Forward	5'- GCAGAGCAGATGGTTATGGTGAT-3'
E2F1-Reverse	5'- GGGCACAGGAAAACATCGAT-3'
PCNA-Forward	5'- CAGGGCTCCATCCTCAAGAA-3'
PCNA-Reverse	5'- GTCCATGCTCTGCAGGTTTACA-3'
CDC7-Forward	5'- GGATCAGCAGTCCACCACAA-3'
CDC7-Reverse	5'- CCCTCCTTTCCGTCTTTTCC-3'
FOXM1-Forward	5'-GGGCGCACGGCGGAAGATGAA-3'
FOXM1-Reverse	5'-CCACTCTTCCAAGGGAGGGCTC-3'
CCNA2-Forward	5'- GCGCTGGCGGTACTGAAGT-3'
CCNA2-Reverse	5'- AGGAACGGTGACATGCTCATC-3'
CCND1-Forward	5'-CTGGAGGTCTGCGAGGAACA-3'
CCND1-Reverse	5'-CTGCAGGCGGCTCTTTTTC-3'
CCNE2-Forward	5'-TTGGCTATGCTGGAGGAAGTAAA-3'
CCNE2-Reverse	5'-TGGTGTCATAATGCCTCCATTG-3'
POLA1-Forward	5'-AGGCTTCACCTCTGACCTTTACA-3'
POLA1-Reverse	5'-TTGCGACAGGTTGGCTCTTC-3'
LIG1-Forward	5'-GGCCTGGTGGATAGTGACAAG-3'
LIG1-Reverse	5'-AATCTGACTTTGCTTCCGGTACA-3'
RFC1-Forward	5'-TAAGCCAACCTCGCTCAAGAC-3'
RFC1-Reverse	5'-TTCGGAGCCAGCGTAGGA-3'
FN1-Forward	5'-GAGGTGGACCCCGCTAAACT-3'
FN1-Reverse	5'-CCTGCCGCAACTACTGTGAT-3'
PAK6-Forward	5'-GTGGGAACCCCCTACTGGAT-3'
PAK6-Reverse	5'-GTACGGTGGCTCCCCATCTA-3'
RAC3-Forward	5'-GCCACTCTCCTACCCCCAAA-3'
RAC3-Reverse	5'-CTTGGCACGAACATTCTCGAA-3'

Supplemental Table 9. Sequences of qRT-PCR primers

Name	Sequences
USP8-Forward	5'-ATCGTTCCACCAAGCCAGTA-3'
USP8-Reverse	5'-TTCGTGCTCTTGTCAAAGGTTCT-3'
DBF4B-Forward	5'-CAGAGAAGTAAAGGCAGAGAGCA-3'
DBF4B-Reverse	5'-CACACATAAAGACGCAAGAGACA-3'
MYO1B-e22-Forward-1	5'-AGGAAGCAGTCACGACCATT-3'
MYO1B-e24-Reverse	5'-AGCAACTGCATGCTTACGCC-3'
MYO1B-e22-Forward-2	5'-GCGCTGTAAGGAAGCAGTCA-3'
MYO1B-e25-Reverse	5'-CTTTCCAGCATTGGCTCTGAAG-3'
PRRC2C-Forward	5'-TCCTACACAGTTTGCACCCC-3'
PRRC2C-Reverse	5'-TCACTGTCCACTTTCTGGGC-3'
OS9-Forward	5'-CCAAAAAGCCTCCCCATCA-3'
OS9-Reverse	5'-CGTGTCCTCATCAGTCAGCC-3'
HNRNPDL-Forward	5'-AGTTGCACAACCCAAAGAGGT-3'
HNRNPDL-Reverse	5'-TTGTTTTGGTGATTGCCACCC-3'
HNRNPM-Forward	5'-AGCTGCGGAAGTCCTAAACA-3'
HNRNPM-Reverse	5'-CCACCACCAGCCATACTA-3'
PRMT2-Forward	5'-AGCGGAGAAACGCGATTGA-3'
PRMT2-Reverse	5'-TGCGATTCACTTCTGGGACA-3'
GOLGA4-Forward	5'-AGAGAAGATGCTCGGCTGAT-3'
GOLGA4-Reverse	5'-TTTCCAAGCAGCAGTCACCC-3'
MYO1B-minigene-Forward	5'-GATAAGAGCCCGGGCGGATCCGCTCGAAAA-3'
MYO1B-minigene-Reverse	5'-TACCGGGCCCCCCCCCGAGAATTCTCTGAA-3'

Supplemental Table 10. Sequences of RT-PCR primers

Name	Catlog No.	Company
Mouse anti-human SRSF1	sc-33652	Santa Cruz Biotechnology
Mouse anti-human β -actin	sc-47778	Santa Cruz Biotechnology
Mouse anti-human CDK2	sc-6248	Santa Cruz Biotechnology
Rabbit anti-human P-PDK1	3438	Cell Signaling Technology
Rabbit anti-human P-AKT	4060	Cell Signaling Technology
Rabbit anti-human p21 ^{WAF1}	2947	Cell Signaling Technology
Rabbit anti-human Cyclin E2	4132	Cell Signaling Technology
Rabbit anti-human P-LIMK1/2	3841	Cell Signaling Technology
Rabbit anti-human p85 PI3K	4292	Cell Signaling Technology
Rabbit anti-human P-PAK1/2/3	ab118537	Abcam
Rabbit anti-HA tag	ab9110	Abcam
Mouse anti-GFP tag	T0005	Affinity Biosciences
Rabbit anti-human MYO1B	HPA013607	Sigma-Aldrich
Rabbit anti-human P-Cofilin	YP0070	Immunoway

Supplemental Table 11. Primary antibodies for Western blot