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SUPPLEMENTARY METHODS 

ENCODE and expression microarray data mining 

ENCODE project genome-wide datasets (hg18) were accessed via the UCSC Genome Browser 

(http://genome.ucsc.edu). ENCODE Integrated Regulation Tracks were used to obtain RNA-seq 

and DNAseI-seq data, which were combined with Chromatin State Segmentation data (1) 

(Combined weak and strong enhancer signatures, Broad Institute). Genomic footprinting data 

was obtained from the UW DNase DGF tracks (University of Washington). Additional histone 

modification data (H3K27Me3, H3K36Me3) shown in Supplementary Figure 1 was obtained 

from the Broad Histone tracks (Broad Institute). The following tracks were used for the 

assessment of erythroid enhancer potential (in K562 cells) of the intergenic LDB1 binding sites 

(Figure 2F and Supplementary Figure 2): H3K4Me1, H3K4Me2, H3K4Me3 and H3K27Ac 

(Broad Histone tracks, Broad Institute); p300 (sc48343 IgG-rab, SYDH TFBS tracks, 

ENCODE/Stanford/Yale/USC/Harvard) and DNaseI-seq (as described above). c-Myb ChIP-seq 

data was also obtained from ENCODE (mm9 build, Stanford/Yale TFBS track). Mouse-human 

sequence conservation was determined for the 100 bp centre of each intergenic LDB1 binding 

site using BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat?command=start).  

Microarray expression analysis datasets of MYB-depleted human erythroid progenitor cells were 

obtained from Sankaran et al. (2)  (GSE25678) and Bianchi et al. (3) (GSE13110). Data were 

analyzed with GEO2R (4) using standard analysis settings to generate lists containing the top 

250 affected genes.  

 

Intergenic SNP selection and transcription factor motif prediction 

HBS1L-MYB intergenic common DNA variants associated with erythroid traits (Figure 1) were 

identified from published data (Table 1). More detailed analysis was performed with a distinct 

group of 17 genetic variants that show peak association across at least three of the main traits  

(%HbF/%F cells, MCV, MCH and RBC parameters) and across several studies. As an example, 
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a cut-off of p<10-75 for MCV was chosen for data from van der Harst et al (5). These variants 

belong to a tight linkage disequilibrium (LD) block (HMIP-2 (6)) detected in Europeans and 

Asians, spanning ~24 kb (chr6:135,452,921-135,477,194, hg18 co-ordinates). 15 of the 17 

variants studied are SNPs (single-nucleotide polymorphisms): rs9376090, rs7776054, 

rs9399137, rs9389268, rs11759553, rs9373124, rs4895440, rs4895441, rs9376092, rs9389269, 

rs9402686, rs6920211, rs9494142, rs9494145 and rs9483788.  

Two additional variants belonging  to this group (a 3bp deletion (7), rs66650371, also known as 

rs67449035, and a SNP residing in its non-deleted allele, rs7775698) have usually been 

reported jointly (with strong association) under ‘rs7775698’, since commercial genotyping arrays 

cannot distinguish between deletion and SNP (7). To assess whether these ‘candidate variants’ 

reside within or near predicted GATA1, TAL1 and/or CTCF binding motifs we used the JASPAR 

(8) database with profile score thresholds of >75%. 

 

Luciferase reporter assays 

The -84 and -71 regulatory region were PCR amplified from K562 genomic DNA (primers: -84F 

– ACTCTGGACAGCAGATGTTACTAT and -84R – TGAGGGAACCGCCCT; -71F -  

GTAGTCTAGTATGTATTGGGTTCC and -71R – AAGATCGCGCCACTGCA) and cloned 3’ of 

the luciferase gene in pGL3-promoter (Promega). Sequence identities of the inserted regions 

(including the rs66650371 allelic identity of the -84 region) were verified using standard Sanger-

sequencing. MEL or HEK cells (2x105 cells per well) were transfected in a 24-well plate using 

Lipofectamine LTX (Invitrogen) according to the manufacturer’s instructions. 0.25 µg of pGL3-

promoter plasmid was transfected; a TK-Renilla plasmid was cotransfected for normalization 

purposes. Luciferase activity was measured 48h post-transfection using the Dual-Luciferase 

Reporter Assay System (Promega) and normalized for renilla levels. Luciferase levels 

generated by a pGL3-promoter plasmid without an enhancer region were set to 1.    
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RNA interference 

Lentiviral particles expressing shRNA against human LDB1, TAL1 and KLF1 were obtained 

from the Sigma TRC 1.0 and TRC 1.5 shRNA libraries (The RNAi Consortium, Sigma). 4-5 

shRNA were tested per factor, of which 2 were used for further experiments: LDB1 

TRCN0000021784 and TRCN0000021785; TAL1 TRCN0000014690 and TRCN0000014691; 

KLF1 TRCN0000016276 and TRCN0000016277. A scrambled shRNA (SHC002) was used as a 

control. Cells were harvested 4 or 5 days after transduction and processed for gene expression 

analysis as described below. 

 

Gene expression analysis 

Total RNA was extracted from K562 cells or primary HEPs using TriPure Isolation Reagent 

(Roche Diagnostics) according to the manufacturer’s instructions. First-strand cDNA synthesis 

and quantitative real-time PCR was performed as described (9). ACTB and HPRT expression 

levels were used for normalization purposes.  

 

3C and 3C-Seq data normalization 

3C-qPCR signals were normalized as described before (10-11). To normalize for differences in 

template loading, we used a proximity-based interaction in the ERCC3 gene (12) and a known, 

invariant CTCF-mediated long-range interaction, 600-650kb upstream of HBB (13). Differences 

in PCR primer efficiencies were filtered out by running in parallel identical PCR reactions on a 

randomly digested and re-ligated BAC DNA sample (covering the entire MYB locus: RP11-

10409; BACPAC Resources), which was spiked with 200 ng/µl human genomic DNA. 

Amplification signals for the different primer sets obtained with 3C material where then 

normalized to the signals obtained with the BAC sample (11).   

 

Allele-specific ChIP(-Seq) analysis 
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We measured differences in ChIP enrichments between the wildtype and the minor alleles of 

rs66650371 within the -84 LDB1-complex binding site utilizing the loss of a MaeIII restriction site 

(GTNAC, Supplementary Figure 4A) on the minor rs66650371 allele. ChIP material from K562 

cells (heterozygous for the rs66650371 SNP (7)) was used for PCR with primers spanning 

rs66650371 (Supplementary Table 1) to linearly amplify the relevant DNA fragments (both for 

the ChIP samples and input genomic DNA as a control). The resulting 91bp amplicon was 

purified and 50 ng of PCR product was digested with MaeIII (2U, 3h at 55°C). Reactions were 

separated on a 3% agarose gel and scanned using a Typhoon 9410 Molecular Imager (GE 

Healthcare). Signal densities of the upper 91bp band and the 2 lower (51bp and 40bp) bands 

were quantified with ImageQuant 5.2 software (Amersham Biosciences). A rs66650371/wildtype 

ratio was determined for all ChIP samples; input genomic DNA ratios were used for 

normalization. To ensure similar digestion efficiencies across the individual samples, identical 

reactions spiked with 25 ng of plasmid DNA were analyzed in parallel on a 1% agarose gel.  

ChIP-sequencing for TAL1 in K562 cells was conducted as described above. Using Bowtie (14), 

the resulting sequencing reads (36 bp) from TAL1 ChIP and input control samples were mapped 

against both the hg18 human reference genome and a manually modified human genome in 

which the rs66650371 TAC sequence was deleted. Only reads strictly informative for the 

specific alleles were used in the comparison. As the number of reads covering rs66650371 was 

low in the input control sample (data not shown), we verified the 1:1 allelic ratio observed in the 

input control material sequencing experiment by cloning a rs66650371-containing PCR 

amplicon in the pGEM-T easy vector using the pGEM-T easy vector system (Promega). 

Sequencing of 20 individual clones confirmed equal rs66650371 allelic ratios in K562 chromatin 

(Figure 5B).   

 

Allele-specific 3C analysis 
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To quantify allelic differences in chromatin looping between the rs66650371 containing -84 

regulatory element and the MYB promoter in K562 cells, we amplified a 4.5kb composite 3C 

fragment from the specific ligation event between the -84 and the MYB promoter BglII fragments 

(Supplementary Figure 4B). In parallel, a control 4.5kb PCR fragment was amplified from all -84 

BglII fragments within the 3C library. These fragments were purified and used as template for a 

linear (15-25 cycles) PCR amplification using rs66650371-spanning primers. The 

rs66650371/wildtype allelic ratio was determined as described above for the allele-specific ChIP 

analysis. Allelic ratios obtained using the control PCR were set to 1 and used for normalization. 

As an extra control, genomic DNA was analyzed in parallel.    

 

SNaPshot analysis of allele-specific protein binding and expression 

To quantify allelic differences in transcription factor binding at the -71kb regulatory element 

encompassing rs9494142, a fragment of 158bp including the SNP and GATA-1 binding site was 

PCR amplified. GATA-1 immunoprecipitated chromatin and input genomic DNA were amplified 

in parallel. PCR products were purified and used for primer extension with the appropriate 

extension primer (Supplementary Table 1). SNaPshot reactions (15) were electrophorezed on a 

DNA Sequencer (ABI 3130, Applied Biosystems) and peak heights of each allele were 

determined using GeneMarker V2 2.0 demo software (SoftGenetics LLC). Experiments were 

performed on biological samples from 4 individuals heterozygous for rs9494142 (T/C). For each 

experiment, the ratio of binding to T/C alleles for input and GATA-1 ChIP were calculated 

independently. T/C ratios for GATA-1 ChIP samples were then normalized to input T/C ratios.   

To measure allele-specific MYB expression, we selected the rs210796(A/T) SNP in MYB intron 

4 as the informative SNP. Healthy unrelated individuals heterozygous for the intergenic variants 

(HMIP-2) were genotyped for rs210796 and 5 individuals heterozygous for both the intergenic 

variants and rs210796 were recruited. Five individuals homozygous for the intergenic variants 

and heterozygous for rs210796 were also recruited as controls. Total RNA was isolated from 
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early erythroid progenitor cells and cDNA was prepared using random hexamer primers. A 

fragment of 260bp encompassing  rs210796 was PCR amplified using genomic DNA and cDNA 

samples, PCR products were used in SNaPshot reactions as described above.  For each 

experiment, the T/A peak height ratio was calculated for genomic DNA and cDNA samples. T/A 

ratios for cDNA samples were normalized to genomic DNA T/A ratios.   
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SUPPLEMENTARY FIGURE LEGENDS 

 

Supplementary Figure 1: Genome-wide histone modification, expression and DNaseI 

hypersensitivity analysis reveals an erythroid/hematopoietic-specific regulatory 

signature for the human HBS1L-MYB intergenic region. (A) Genome-wide ChIP-Seq and 

RNA-Seq data from the ENCODE consortium is displayed for the human HBS1L-MYB 

intergenic region in 9 different human cell types. Histone 3 lysine 4 trimethylation (K4Me3, 

marking promoters), lysine 4 monomethylation (K4Me1, marking enhancers), lysine 27 

acetylation (K27Ac, marking enhancers) and RNA-Seq expression analysis are shown. (B) 

Histone 3 lysine 36 trimethylation (K36Me3, marking productive transcription elongation) and 

(C) lysine 27 trimethylation (K27Me3, marking Polycomb-repressed regions) ChIP-Seq data for 

the HBS1L-MYB intergenic region in 8-9 different human cell types. (D) DNaseI-Seq and Digital 

Genomic Footprinting data for the HBS1L-MYB intergenic region in different human cell types. 

 

Supplementary Figure 2: Colocalization of DNaseI-hypersensitivity, conservation and 

enhancer-associated histone modifications and proteins with intergenic LDB1-complex 

binding sites. Colocalization (highlighted by blue shading) of the different enhancer-associated 

marks (K562 tracks in blue, obtained from the ENCODE consortium) and the individual 

intergenic LDB1-complex binding sites (numbered by distance to the MYB transcription start 

site, LDB1 ChIP-Seq track in black) from primary human erythroid progenitors. Mammalian 

conservation (Mammal Cons) is shown in the bottom track. Transcription factor (Ldb1-complex) 

binding in the corresponding mouse region (9) is denoted below each graph.  

 

Supplementary Figure 3: Chromosome conformation capture analysis of the HBS1L-MYB 

locus reveals long-range interactions between intergenic elements and the MYB gene in 

K562 cells. 3C-qPCR experiments on K562 cells (n=4) using the MYB promoter as viewpoint. 
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The locus is plotted on top, with the different 3C restriction fragments (BglII) used indicated. 

Interaction frequencies between 2 fragments within the ERCC3 locus were used for 

normalization. Error bars display s.e.m. 

 

Supplementary Figure 4: Strategy used to quantify differences in transcription factor 

binding and promoter looping to the K562 rs66650371 alleles. (A) MaeIII digestion read-out 

method used for allele-specific ChIP and 3C assays. The rs66650371 reference allele contains 

a MaeIII site, which is removed by the rs66650371 3bp-deletion allele. A 91bp product spanning 

rs66650371 was PCR amplified and subjected to MaeIII digest, resulting in 3 fragments: 88bp 

(representing the ‘SNP allele’) and 51/40 bp fragments (together representing the ‘WT allele’). 

Fragments were separated using agarose gel electrophoresis and quantified to determine a 

SNP/WT ratio. Duplicate samples spiked with pGL3 plasmid were digested in parallel to ensure 

digestion efficiencies were similar across samples. (B) Strategy used for rs66650371 allele-

specific 3C in K562 cells. Below a schematic of the locus (top), 2 boxed figures depict the 2 

BglII restriction fragments that form the composite -84/promoter 3C fragment. Three primers 

were designed that generate 2 PCR amplicons (~4.5kb) encompassing rs66650371. Primers 

1+3 can only yield a product when the specific -84/promoter composite fragment is present (‘-

84+prom. specific PCR’). Primers 1+2 are both located on the -84 fragment and will amplify all -

84 fragments (‘CTRL PCR’). Amplicons are purified from gel and the MaeIII digestion read-out 

approach described in (A) is used to determine allelic ratios. Ratios obtained from the ‘CTRL 

PCR’ were used for normalization.  

 

Supplementary Figure 5: Differentiation kinetics of WT/WT and SNP/SNP cultures as 

assayed by FACS analysis. (A) Representative FACS measurements showing the relative 

increase of GPA positive (late erythroid cells) cells during phase II culture (day 4-day 13) of 

primary erythroid progenitors. The percentage GPA positive cells was normalized intra-
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individually for small differences in the percentage of CD71 positive cells; day 4 measurements 

were set to 1. Cells were obtained from individuals homozygous for the minor allele of the 

phenotype-associated SNPs (HMIP-2 LD block variants; SNP/SNP) and wildtype control 

individuals (WT/WT). (B) Percentage of CD14+ monocytes present in WT/WT and SNP/SNP 

erythroid cells during culture. Representative measurements performed at day 4 and day 11 are 

depicted.    

 

Supplementary Figure 6: GATA1 ChIP experiments on primary human erythroid cultures 

harvested at terminal stages of differentiation. (A) Representative results of ChIP-qPCR 

experiments for GATA1 on chromatin prepared from WT/WT HEPs on day 7 and day 11 of 

erythroid differentiation. (B) Representative results of ChIP-qPCR experiments for GATA1 on 

chromatin prepared from WT/WT and SNP/SNP (homozygous for the minor allele of the 

phenotype-associated HMIP-2 LD block variants) HEPs on day 11 of erythroid differentiation. 

The -84 and -71 regulatory elements were assayed for GATA1 binding, the α-globin hs40 region 

was used as a positive control. Enrichments were normalized to IgG.    

 

Supplementary Figure 7: Plausible model for MYB-mediated repression of HbF levels via 

cell cycle regulation and transcriptional activation of HbF repressor genes. (A) c-Myb 

ChIP-seq data (obtained from the ENCODE consortium) from MEL cells showing c-Myb binding 

to the β-globin locus and HbF repressor genes (Nr2c2 encodes the TR4 protein). (B) c-Myb 

ChIP-seq data from MEL cells showing c-Myb binding to selected cell cycle regulators. (C) 

Analysis of published c-MYB knockdown studies in human erythroid progenitors. Downregulated 

HbF repressor genes and a selection of affected cell cycle regulators is shown. (D) Dual model 

of MYB-mediated HbF repression. Lower MYB levels (as a result of disrupting enhancer 

variants) can lead to HbF induction via increased premature cell cycle termination (‘indirect’, top 

part), resulting in the generation of more F-cells and a higher HbF level. Fewer proliferation 
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cycles (‘x2’, indicating cell division) will result in a lower red blood cell count (RBC) and a larger 

mean cell volume (MCV). Alternatively, lower MYB levels could result in a loss of proper 

transcriptional regulation at the β-globin locus and HbF repressor genes (‘direct’, lower part). 

Reduced activation by MYB of known HbF repressors (e.g. BCL11A, KLF1) or disrupted 

regulation at the β-globin locus could result in γ-globin gene reactivation and subsequent HbF 

induction. 
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primers used in this study:

Reaction Application Primer 1 Primer 2
hLDB1 -92 ACTCCTGAGATTCTACCATTAGG GTGAAGGTGTTGGCTGATAAA
hLDB1 -87 GACAAACACTCCCACAGG TGAACCTCACAAAACCCTTG
hLDB1 -84 TTCTTCTCCTCTATGGTAACCG TTATTTTCACAACCGAGCCT

hLDB1 -82.5 GCAACCACACCCGACTAA ACACCTGTAATCATGCTTTAGG
hLDB1 -78 GCCTGCTGTAGACTGCTA GCTGACACCCACTTCAAA
hLDB1 -71 GTTACTGAAGAAGGCTGCTG ACTGAGAGACCAAAGACACT
hLDB1 -63 GAACAACCTGTCACATAAGAC TGAGACGGGAAGGAACTTT

HBG1/2 prom AAACGGTCCCTGGCTAAACT GCTGAAGGGTGCTTCCTTTT
hAMY prom GGCTGAGTGTTCTGGGAT CACGGTGCTCTGGTAGAT
alpha HS40 CGACCCTCTGGAACCTATCAG TTGGCCTCCAGAAGCACTG

MYB CAACGACTATTCCTATTACCACA CTAAACTAACCGTCTCTCTCAT
HBS1L AGTATCACCACTTGTAAAGAAAG GAGCCCGAATCCTCATCT
ACTB tgacccagatcatgtttgag cgtacagggatagcacag
LDB1 TAGCACCTTCGCCCTCTC TTGGCTGCGTCAAACTGG
TAL1 AAGGTCTCCTCTTCACTCG CTCTACAGCCTCAGCCAG
KLF1 CCCTCCATCAGCACACTG TGGTCCTCAGACTTCACG

MYB prom + -84 ACCACACCGGGTCTAGCA CCATTAAACAGTAACTCCCCAGAT
MYB prom + -16 ACCACACCGGGTCTAGCA TGGGATGCTACCTTCAAAATCAAG
MYB prom + -36 ACCACACCGGGTCTAGCA CAATGCATTGATCCTCTGGTAGAA

MYB prom + -53.5 ACCACACCGGGTCTAGCA TGTGAGTGCGAGAACCCAAAG
MYB prom + -4.3 ACCACACCGGGTCTAGCA TCAGATGTATCACAGTGCTTAGAT
 -84 + CTCFintr1 CCATTAAACAGTAACTCCCCAGAT TCAACTAAACTACAGGTGCTCAAG 

 -84 + -36 CCATTAAACAGTAACTCCCCAGAT CAATGCATTGATCCTCTGGTAGAA
 -84 + -16 CCATTAAACAGTAACTCCCCAGAT TGGGATGCTACCTTCAAAATCAAG
 -84 + -4.3 CCATTAAACAGTAACTCCCCAGAT TCAGATGTATCACAGTGCTTAGAT

 -84 + -53.5 CCATTAAACAGTAACTCCCCAGAT TGTGAGTGCGAGAACCCAAAG
 -84 + +19 CCATTAAACAGTAACTCCCCAGAT CAGCAACAATTCCAGATTCATCAG

XPB CCAGCATGGAGTAGGTGCTAA TGGAGCCACCATGGGATGA
CTCFctrl TTTCCATGACATGCTCCTCTTG CCGGCTGATGTTCCAGTTCA

3C-seq MYB prom ATTAGCCTAATAAAATTACTGCATG GACAACTTTACACATTTCATCAC
3C-Seq -84 CTGTACCCTCAAAACACTTCA TACTCTGTCTCTAATAGGAGATCA

rs66650371 all.sp. quant TTCTTCTCCTCTATGGTAACCG TTATTTTCACAACCGAGCCT
3C MYB prom + -84 all.sp. ACCACACCGGGTCTAGCA GTGATGTTGCAGAAGAACAAAGC

3C MYB prom + -84 all.sp. CTRL GTGATGTTGCAGAAGAACAAAGC ATGGTTAATGATCATGGCTGCAA
 -84 GATA1 ChIP TGGTTTTAGGCTCGGTTGTGAAAA GTAAGTGTCTTCTGAGGGAACCG
 -71 GATA1 ChIP AGGCTGCTGGCTTCTTTGCT AAGATATCACACCCACCATGTTGA

extension primer ChIP ATTCGATTCTACTACTGACA
rs210796 RNA accgtatttctgtacaagctcta attatgagtcacacaccaatgaaga

extension primer RNA TTTTCCTATTTGAGGAAGCAGGTAAA

ChIP-qPCR

Gene expression

3C-qPCR

3C-Seq

Allele-specific ChIP/3C
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Supplementary Figure 1: Genome-wide histone modi�cation, expression and DNaseI hypersensitivity analysis reveals an 
erythroid/haematopoietic-speci�c regulatory signature for the human HBS1L-MYB intergenic region. (A) Genome-wide ChIP-Seq and 
RNA-Seq data from the ENCODE consortium is displayed for the human HBS1L-MYB intergenic region in 9 di�erent human cell types. Histone 
3 lysine 4 trimethylation (K4Me3, marking promoters), lysine 4 monomethylation (K4Me1, marking enhancers), lysine 27 acetylation (K27Ac, 
marking enhancers) and RNA-Seq expression analysis are shown. (B) Histone 3 lysine 36 trimethylation (K36Me3, marking productive 
transcription elongation) and (C) lysine 27 trimethylation (K27Me3, marking Polycomb-repressed regions) ChIP-Seq data for the HBS1L-MYB 
intergenic region in 8-9 di�erent human cell types. (D) DNaseI-Seq and Digital Genomic Footprinting data for the HBS1L-MYB intergenic 
region in di�erent human cell types. 
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Supplementary Figure 2: Colocalization of DNaseI-hypersensitivity, conservation and enhancer-associated histone modi�cations 
and proteins with intergenic LDB1-complex binding sites. Colocalization (highlighted by blue shading) of the di�erent enhancer-
associated marks (K562 tracks in blue, obtained from the ENCODE consortium) and the individual intergenic LDB1-complex binding sites 
(numbered by distance to the MYB transcription start site, LDB1 ChIP-Seq track in black) from primary human erythroid progenitors. 
Mammalian conservation (Mammal Cons) is shown in the bottom track. Transcription factor (Ldb1-complex) binding in the corresponding 
mouse region (Ref.25) is denoted below each graph.  
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Supplementary Figure 3: Chromosome conformation capture analysis of the HBS1L-MYB locus reveals long-range interactions 
between intergenic elements and the MYB gene in K562 cells. 3C-qPCR experiments on K562 cells (n=4) using the MYB promoter as 
viewpoint. The locus is plotted on top, with the di�erent 3C restriction fragments (BglII) used indicated. Interaction frequencies between 2 
fragments within the ERCC3 locus were used for normalization. Error bars display s.e.m. 
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Supplementary Figure 4: Strategy used to quantify di�erences in transcription factor binding and promoter looping to the K562 
rs66650371 alleles. (A) MaeIII digestion read-out method used for allele-speci�c ChIP and 3C assays. The rs66650371 reference allele 
contains a MaeIII site, which is removed by the rs66650371 3bp-deletion allele. A 91bp product spanning rs66650371 was PCR ampli�ed and 
subjected to MaeIII digest, resulting in 3 fragments: 88bp (representing the ‘SNP allele’) and 51/40 bp fragments (together representing the 
‘WT allele’). Fragments were separated using agarose gel electrophoresis and quanti�ed to determine a SNP/WT ratio. Duplicate samples 
spiked with pGL3 plasmid were digested in parallel to ensure digestion e�ciencies were similar across samples. (B) Strategy used for 
rs66650371 allele-speci�c 3C in K562 cells. Below a schematic of the locus (top), 2 boxed �gures depict the 2 BglII restriction fragments that 
form the composite -84/promoter 3C fragment. Three primers were designed that generate 2 PCR amplicons (~4.5kb) encompassing 
rs66650371. Primers 1+3 can only yield a product when the speci�c -84/promoter composite fragment is present (‘-84+prom. speci�c PCR’). 
Primers 1+2 are both located on the -84 fragment and will amplify all -84 fragments (‘CTRL PCR’). Amplicons are puri�ed from gel and the 
MaeIII digestion read-out approach described in (A) is used to determine allelic ratios. Ratios obtained from the ‘CTRL PCR’ were used for 
normalization.  
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Supplementary Figure 5: Di�erentiation kinetics of WT/WT and SNP/SNP cultures as assayed by FACS analysis. (A) Representative 
FACS measurements showing the relative increase of GPA positive (late erythroid cells) cells during phase II culture (day 4-day 13) of primary 
erythroid progenitors. The percentage GPA positive cells was normalized intra-individually for small di�erences in the percentage of CD71 
positive cells; day 4 measurements were set to 1. Cells were obtained from individuals homozygous for the minor allele of the phenotype-
associated SNPs (HMIP-2 LD block variants; SNP/SNP) and wildtype control individuals (WT/WT). (B) Percentage of CD14+ monocytes present 
in WT/WT and SNP/SNP erythroid cells during culture. Representative measurements performed at day 4 and day 11 are depicted.    
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Supplementary Figure 6: GATA1 ChIP experiments on primary human erythroid cultures harvested at terminal stages of 
di�erentiation. (A) Representative results of ChIP-qPCR experiments for GATA1 on chromatin prepared from WT/WT HEPs on day 7 and day 
11 of erythroid di�erentiation. (B) Representative results of ChIP-qPCR experiments for GATA1 on chromatin prepared from WT/WT and 
SNP/SNP (homozygous for the minor allele of the phenotype-associated HMIP-2 LD block variants) HEPs on day 11 of erythroid 
di�erentiation. The -84 and -71 regulatory elements were assayed for GATA1 binding, the α-globin hs40 region was used as a positive 
control. Enrichments were normalized to IgG.    
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Supplementary Figure 7: Plausible model for MYB-mediated repression of HbF levels via cell cycle regulation and transcriptional 
activation of HbF repressor genes. (A) c-Myb ChIP-seq data (obtained from the ENCODE consortium) from MEL cells showing c-Myb 
binding to the β-globin locus and HbF repressor genes (Nr2c2 encodes the TR4 protein). (B) c-Myb ChIP-seq data from MEL cells showing c-
Myb binding to selected cell cycle regulators. (C) Analysis of published MYB knockdown studies in human erythroid progenitors. 
Downregulated HbF repressor genes and a selection of a�ected cell cycle regulators is shown. (D) Dual model of MYB-mediated HbF 
repression. Lower MYB levels (as a result of disrupting enhancer variants) can lead to HbF induction via increased premature cell cycle 
termination (‘indirect’, top part), resulting in the generation of more F-cells and a higher HbF level. Fewer proliferation cycles (‘x2’, indicating 
cell division) will result in a lower red blood cell count (RBC) and a larger mean cell volume (MCV). Alternatively, lower MYB levels could result 
in a loss of proper transcriptional regulation at the β-globin locus and HbF repressor genes (‘direct’, lower part). Reduced activation by MYB 
of known HbF repressors (e.g. BCL11A, KLF1) or disrupted regulation at the β-globin locus could result in γ-globin gene reactivation and 
subsequent HbF induction. 
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