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Twenty years after the discovery of the vascular endothelial Tie receptor tyrosine kinases and 15 years after the
discovery of the Tie2 ligand, angiopoietin-1 (Angpt1, also known as Ang1), a study published in the current issue of the
JCI reveals an unexpected loss-of-function phenotype of mice conditionally deleted of the Angpt1 gene. The results
suggest that Angpt1 is needed as a vascular stabilizing factor that organizes and limits the angiogenesis response and
protects from pathological consequences, such as tissue fibrosis.
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Angiopoietin-1 and angiopoietin-2  
in sprouting angiogenesis
In the process of sprouting angiogenesis 
that typically occurs when VEGF stimu-
lates capillaries, the leading edges of grow-
ing capillary sprouts display migrating 
and slowly dividing tip cells, which extend 
filopodia in response to VEGF gradients 
(1). Tip cells are followed by less mobile 
proliferating stalk cells, which express the 
Tie2 receptor and recruit pericytes. Angio-
poietin-1 (Angpt1) is expressed by peri-
vascular cells, such as pericytes, and the 
related Tie2 ligand Angpt2 is expressed by 
the endothelial tip cells. Although Angpt1 
and Angpt2 both bind to Tie2 with similar 
affinities, they seem to act as antagonists 
of each other in several vascular processes 

(2, 3). In the stalk cells that become asso-
ciated with pericytes, Angpt1 may limit 
angiogenesis by inducing homomeric 
Tie2 complexes across the cell-cell junc-
tions, and mediating cell-cell adhesion, 
antipermeability, and cell survival (4, 5). In 
contrast, Angpt2 may regulate cell-matrix 
interactions in the growing vessels to facil-
itate sprouting (Figure 1).

Myocardial Angpt1 is essential for 
cardiovascular development
The study by Jeansson et al. shows that 
despite the constitutive expression of 
Angpt1 in many cell types, including peri-
vascular mural cells, and constitutive Tie2 
activation in vascular endothelial cells in 
vivo (2, 6), Angpt1 is not necessary for nor-
mal steady-state physiological processes in 
the adult, being dispensable in the blood 
vasculature from E13.5 onward (7). How-
ever, Angpt1 is essential for the develop-
ment of embryonic vasculature during a 

short period between E10.5 and E13.5 (7, 8). 
Tie2 and the related Tie1 (9) are also critical 
during that period. Analysis of Tie2-deleted 
and mosaic mutant embryos at E10.5 indi-
cated that Tie2 is required in the developing 
endocardium for myocardial attachment 
and trabeculation, whereas Tie2 and Tie1 
are dispensable for the initial assembly of 
the rest of the vasculature (10–12). Thus, 
it was of no surprise that the embryos died 
when, in the study by Jeansson et al., Angpt1 
was deleted from the developing embryos 
before E12.5 (7). Interestingly, however, 
these new data indicate that cardiomyo-
cyte-specific deletion of Angpt1 reproduces 
much of the phenotype of the full Angpt1 
knockout, suggesting that hemodynamic 
problems propagate the vascular defects 
to other tissues (7, 8). However, studies in 
which Angpt1 would be deleted in other 
developing vascular beads, while leaving the 
cardiac Angpt1 levels intact, are needed to 
confirm these results. The previously pub-
lished mosaic analysis indicated that both 
Tie1 and Tie2 are required in the microvas-
culature during late organogenesis and in 
essentially all blood vessels of the adult (12, 
13). The report by Jeansson et al. thus raises 
the intriguing possibility that the require-
ment for Tie1 and Tie2 in the microvascula-
ture is independent of Angpt1 function.
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Pericytes were normally invested around 
the endothelium in resting and angiogenic 
capillaries of the Angpt1-deleted mice (7), in 
line with studies of Tie2–/–Tie1–/– chimeric 
embryos, which do not show differences in 
pericyte recruitment (12). Angpt2 made by 
endothelial cells is stored in Weibel-Palade 
bodies, from which it is rapidly released in 
various pathological processes (14), facili-
tating endothelial cell responsiveness to 
inflammatory and angiogenic cytokines. 
Autocrine Angpt2 secretion is also associat-
ed with pericyte detachment (2). The report 
by Jeansson et al. suggests that Angpt2-
induced pericyte loss might not be due to 
its inhibition of Angpt1 function (7). Exog-
enous Angpt1 is known to inhibit vessel 
permeability, especially when induced by 
a variety of cytokines (15). However, Jeans-
son et al. reveal in their discussion that, in 
their model, Angpt1 could be deleted with-
out effects on the permeability of mature, 
quiescent vessels (7).

Angpt1 deletion leads to excessive 
angiogenesis and tissue fibrosis
Upon injury or microvascular stress, Angpt1-
deficient mice displayed an excess of angio-

genesis and tissue fibrosis (7). Previous 
studies have shown that systemic adminis-
tration of a chimeric Angpt1 protein pro-
tects the kidney from diabetic microvascu-
lar damage (16). In the model proposed by 
Jeansson et al., loss of endogenous Angpt1 
aggravated the kidney glomerular damage 
in diabetes induced by streptozocin (7). The 
formation of the vascular basement mem-
brane matrix was excessive in the Angpt1-
deficient diabetic glomeruli, presumably in 
response to the induction of TGF-b. Sever-
al lines of evidence suggest that the angio-
poietins regulate endothelial cell–matrix 
interactions. Endothelial cell interactions 
with the subendothelial basement mem-
brane are defective in the Angpt1-deleted 
embryos (8). Matrix-bound Angpt1 induces  
Tie2 localization to cell-matrix contacts 
in mobile (angiogenic) cells, mediating 
cell migration and matrix adhesion (4, 5). 
The disorganized glomerular basement 
membrane and detached endothelial cells 
observed in the glomeruli of the Angpt1-
deleted mice may have resulted from lack 
of such interaction between matrix-bound 
Angpt1 and Tie2 on the endothelial cells. 
Furthermore, several reports have suggest-

ed that the angiopoietins bind to pericel-
lular matrix and integrins and may even 
signal via the integrins (2, 17). This sug-
gests that the Angpt1 pathway provides a 
feedback sensor of the pericellular matrix 
— for example, in angiogenic sprouts. Fur-
ther work should elucidate the exact mech-
anisms involved in these interactions.

Whether inflammatory cells contribute 
to the tissue fibrosis in the Angpt1-deleted 
mice remains to be studied. The fast release 
of Angpt2 from Weibel-Palade bodies after 
endothelial activation by cytokines sug-
gests a role for Angpt2 in rapid control of 
vascular responses to inflammation (2). 
Indeed, in mice lacking Angpt2, leukocyte 
transmigration to inflamed tissues is defec-
tive (18). Although there were no compen-
satory changes in Angpt2 levels after Angpt1 
knockout, the deletion would dramatically 
alter the Angpt1/Angpt2 ratio that is a crit-
ical switch controlling inflammatory pro-
cesses, such as leukocyte transmigration in 
the vessel wall.

The outstanding tumor questions
The effects of Angpt1 deletion on tumor 
angiogenesis also remain to be studied. It 

Figure 1
The Angpt-Tie system in stable vessels and sprouting angiogenesis. In stable vessels, Angpt1 is produced by pericytes, Tie2 is activated in 
endothelial cells, and Angpt2 is stored in Weibel-Palade bodies. However, the data by Jeansson et al. in this issue of the JCI indicates that 
Angpt1 function is not necessary for normal vascular physiology (7), although Tie2 has been found to be constitutively phosphorylated in quies-
cent endothelium (6). In vessels undergoing angiogenesis in response to VEGF secreted by nearby hypoxic cells, Angpt2 is expressed predomi-
nantly in the tip cells of angiogenic sprouts, where it may regulate cell-matrix interactions by binding to integrins and connective tissue matrix. 
The Tie2 receptor is expressed in the stalk cells, which become coated with pericytes and the basement membrane matrix that accumulates in 
between the cells in the stabilization phase of angiogenesis. Angpt1, from the perivascular cells, interacts with the Tie2 receptor. In this context, 
Angpt1 is necessary for the stabilization of the newly formed vessels, for attenuation of angiogenesis, and for limiting the production of excess of 
connective tissue. Whether Angpt2 counteracts the Angpt1-induced Tie2 activation in the stalk cells located behind the angiogenic tip cell area 
is as yet not clear. Angpt2 may also facilitate leukocyte adhesion to the endothelium of newly forming sprouts.
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has been suggested that Angpt1 is responsi-
ble for the tumor vessel normalization seen 
in patients treated with anti-VEGF antibod-
ies (19). Again, the balance of Angpt1 and 
Angpt2 seems critical, as Angpt2 expres-
sion is known to be highly upregulated by 
endothelial cells of tumor co-opted blood 
vessels. This leads to vessel disruption and 
hypoxic induction of VEGF production 
and the initiation of angiogenesis (20). The 
angiopoietin system may be involved in 
the recruitment of proangiogenic myeloid 
cells and, in particular, Tie2-positive cells 
of the monocyte/macrophage lineage to 
tumors (21). In this regard, it is interesting 
that Angpt1 has been shown to promote 
hematopoietic stem cell quiescence in the 
bone marrow (22), an activity that needs 
to be reassessed in the Angpt1-deleted mice. 
Angpt2-blocking molecules that have been 
successfully used to inhibit tumor angiogen-
esis seem to provide an additive inhibition 
over anti-VEGF therapy, and they are already 
in advanced clinical trials (23). It will be very 
interesting to know whether, according to 
the models, Angpt2 acts as an antagonist of 
Angpt1 in the tumor vessels, a question that 
can now be addressed using the conditional 
Angpt1-knockout model. After all, a rational 
development of angiopoietin-based thera-
peutics depends on the general question of 
how Angpt2 and Angpt1, the yin and yang 
of angiogenesis, can induce both angiogen-
esis and vascular stabilization through their 
common receptor (4, 5).
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